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Preface 

Heterogeneous object modelling is a new and quickly developing research area. It 
shows great promise in a number of important application areas such as in volume 
modelling and rendering, in the modelling of objects with multiple materials in CAD 
as well as in rapid prototyping and fabrication, in the simulation of different physical 
properties and in various other areas. 

One of the main goals of computer simulation is to digitally represent reality as 
precisely as possible in order to provide us with a better understanding of the 
simulated material or phenomenon and to allow us to reliably experiment with it, in a 
virtual fashion, applying to it various modifications. A computer model of a real 
object should be able to represent many different aspects of the object, such as its 
outer shape, its general functionality, its internal structure, an ability to move and to 
interact with its environment, and perhaps other properties of the object. Man-made 
objects are often nearly uniform in their internal structure; for example, mechanical 
parts are usually made of a single type of metal. In contrast, natural objects are rarely 
homogeneous, having a complicated internal distribution of various materials. 

During their relatively short history, such application areas of computing as 
computer graphics, geometric and solid modelling, and computer-aided design have 
primarily been concerned with the digital representation and visualization of 
homogeneous objects. The main reasons for this were a preoccupation of the 
researchers in the field with man-made objects and the limited computing power 
available at the time. The next generation of mathematical models and supporting 
software systems should provide means for modelling artifacts that may be 
heterogeneous in material, dimension, and other geometrical or physical properties. 

Two-dimensional texture mapping in computer graphics can be considered a first 
attempt to cope with an object’s optical properties, such as its color and reflectance. 
Volume graphics took the next step in introducing a discrete volumetric distribution 
of density and other object properties that were simulated or sampled using special 
volume scanning devices. Emerging composite material technology and fabrication 
processes allowing the deposition of different materials at a given spatial location 
have stimulated research in modelling functionally graded materials. However, we 
can observe that currently the modelling of two opposite clusters of objects is 
supported, namely, objects that have a fairly complex geometry and a rather simple 
internal distribution of properties, or alternatively objects that have a fairly simple 
geometry and an elaborate internal distribution of properties. There is a need for a 
universal model capable of representing the full spectrum of heterogeneous objects 
with both complex geometric shapes and complex variations in their internal 
properties. 

Although real objects are essentially three-dimensional, it is useful to consider 
them as lower-dimensional entities in some modelling applications. Including one- 
and two-dimensional objects in a model allows both for a higher abstraction level and 
for model simplification. An important issue is the combination of entities of different 
dimensions into a single mixed-dimensional heterogeneous object model. Various 
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types of topological complexes have been proposed for this purpose. An open 
research question is the modelling of objects where a heterogeneous topology is 
combined with heterogeneous materials or other property attributes. 

It is well-known that there is no single mathematical model which is universally 
the best for the representation of different shapes and their transformations. The same 
is true for heterogeneous object modelling. One of the ways to deal with this problem 
is by introducing hybrid models, where the most appropriate object representation is 
applied to the entire object or each of its elements at every stage of the modelling 
process. Here, the key idea is that there are several representations supported by the 
modelling system and a conversion method between these representations is applied 
either on user request or when some predefined conditions are satisfied. A challenging 
problem for a hybrid modelling system is the support of topological complexes with 
entities that have different mathematical representations. 

Heterogeneous object modelling is still considered as an emerging research topic. 
Recently, there have been quite a few journal publications and conference papers 
devoted to different aspects of this broad area. This book is one of the first attempts to 
systematically cover the most relevant themes and problems of this new and 
challenging subject area. Our objective is to provide a first-hand description of the 
modern state of the art and to outline the most interesting directions for future 
research. 

This book is a collection of invited papers and papers co-authored by the editors. 
Each chapter presents either new research results or a survey on the following topics: 

 Formal models and abstractions of heterogeneous objects including geometric, 
topological, discrete and continuous models, operations forming special algebras 
and conversions between different model types. 

 Data structures and algorithms for representing, modifying and computing with 
heterogeneous objects. Computational techniques for the design, reconstruction, 
optimization, analysis and simulation of heterogeneous objects that incorporate 
information on shape, material and physical behavior using a common framework. 

 Applications of heterogeneous object modelling in engineering and scientific 
areas, including geophysical, biomedical, artistic and multi-material fabrication 
applications. 

The editors are grateful to all the authors who have presented their most recent 
work and hope that this book will prove useful in advancing this novel, challenging 
and important research and development area. 

 
 

January 2008                                                                                                               Alexander Pasko 
Valery Adzhiev 
Peter Comninos 

The National Centre for Computer Animation 
Bournemouth University, UK 
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An Implicit Complexes Framework  
for Heterogeneous Objects Modelling  

Elena Kartasheva1, Valery Adzhiev2, Peter Comninos2, Oleg Fryazinov2,  
and Alexander Pasko2 

1 Moscow Institute for Mathematical Modelling, Russian Academy of Science, Russia 
ekart@imamod.ru 

2 The National Centre for Computer Animation, Bournemouth University, Poole UK 
{vadzhiev, peterc, ofryazinov, apasko}@bournemouth.ac.uk 

Abstract. In this paper we further develop a novel approach for modelling het-
erogeneous objects containing entities of various dimensions and representa-
tions within a cellular-functional framework based on the implicit complex no-
tion. We provide a brief description for implicit complexes and describe their 
structure including both the geometry and topology of cells of different types. 
Then the paper focuses on the development of algorithms for set-theoretic op-
erations on heterogeneous objects represented by implicit complexes. We also 
describe a step-by-step procedure for the construction of a hybrid model using 
these operations. Finally, we present a case-study showing how to construct a 
hybrid model integrating both boundary and function representations. Our ex-
amples also illustrate modelling with attributes and dynamic modelling.  

1   Introduction 

Heterogeneous object modelling is becoming an important research topic in different 
application areas such as volume modelling and rendering, modelling of objects with 
multiple and varying materials in CAD and in rapid prototyping [12]. Such objects 
may represent mechanical parts or assemblies, geological and medical models, the 
results of physical simulations as well as time-dependant models of an artistic nature, 
and are heterogeneous in terms of their internal structure and their dimensionality. 
Various approaches based on boundary representations, topological decompositions 
and constructive procedural methods have been developed for the description of such 
heterogeneous objects [16]. The subject of our particular interest is topological subdi-
visions which describe an object or its boundary by a collection of disjoint open point 
sets or by a collection of quasi-disjoint closed point sets (which are glued together at 
their common boundaries). Such representations provide all information necessary for 
numerical simulation, for contact and friction analysis and for other CAD/CAM ap-
plications, but it is difficult to parameterize them and to ensure their validity (espe-
cially so in the case of the boundary representations). Moreover the implementation of 
many operations on objects described by topological decompositions is accompanied 
by a considerable loss of precision and performance.  
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In contrast, constructive representations are always valid and can easily be param-
eterized. They are very efficient for model editing and lead to considerable storage 
savings in comparison with topological decompositions. On the other hand, construc-
tive models provide very little explicit information about the associated objects. Con-
sequently, they have to be converted into equivalent topological subdivisions to make 
it possible to apply numerical methods for the purpose of analysis of the described 
objects. All of this was the motivation for introducing in [1] a hybrid cellular func-
tional model based on the notion of implicit complexes (IC), which allows for the 
flexible combination of a cellular representation and a constructive function represen-
tation altogether with attribute models.  

ICs describe composite heterogeneous objects consisting of several components 
that can differ in their dimensionality, geometric representation, and non-geometric 
attributes. Within the IC framework we proposed a way of constructing a hybrid 
model which is not supposed to serve just for the combined usage of separate repre-
sentations but it is genuinely unified. The IC-based framework provides a unified de-
scription of the geometry, topology, and attributes of a heterogeneous object. An ob-
ject is described as the union of cells of various representation types and dimensional-
ities along with the relations between them. The main relations characterizing mutual 
locations of cells are the boundary and the containment relations. Non-geometric at-
tributes are independently described by functional or cellular models and are associ-
ated with IC’s cells by means of attribute relations.  

In our previous papers [1, 15], we introduced an IC’s general structure and de-
scribed some basic procedures of the IC-based model construction along with suitable 
rendering methods. In this paper, we give a systematic description of the IC-based 
hybrid model, consider algorithms for the construction and the discretization of ICs, 
and examine in detail set-theoretic operations on heterogeneous objects within the IC 
framework.  

The paper structure is as follows. Section 2 reviews some related works concerning 
the modelling of heterogeneous objects. We present the main features of IC based 
models in section 3 and then in Section 4 we give a rather detailed outline of a formal 
IC framework along with a description of the IC topology, IC geometry, IC attribute 
model and some other basic material. In Section 5, the basic operations on ICs and 
their elements are described. The set-theoretic operations on objects described by ICs 
are presented in Section 6. Section 7 includes some case studies illustrating practical 
applications of the IC framework. Finally, some conclusions are made and future 
work is outlined.  

2   Related Works 

In this section we briefly discuss some previous works on modelling dimensionally 
heterogeneous objects, objects with varying distribution of material and other attrib-
utes, and approaches to combining various geometrical representations. Both topo-
logical subdivisions and constructive procedural methods are used for the description 
of heterogeneous objects.  
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Various topological stratifications and complexes are used to describe spatial subdivi-
sions [21, 30]. Types of stratifications and complexes differ in the constraints imposed on 
the topology of their elements and on the connections between these elements. Multidi-
mensional simplicial complexes are used in [23] for dimension-independent geometric 
modelling for various applications. A Selective Geometric Complex (SGC) [32] is a non-
regularised non-homogeneous point set represented through enumeration as the union of 
mutually disjoint connected open subsets of the real algebraic variety. A SGC provides a 
framework for representing objects of mixed dimensionality possibly having internal 
structures and incomplete boundaries.  

The Djinn API for solid modelling [4] is based on objects partitioned in a cellular 
way and containing mutually disjoint cells which are manifold point-sets of differing 
dimensionality in 3D. In [10] an extension of B-spline surfaces to surfaces of arbitrary 
topology is proposed. Polyhedral complexes are used to describe the surface topology. 
A procedure for designing cellular models based on CW-complexes with an emphasis 
on the topological validity of the resulting shapes is considered in [19, 22]. Selective 
Nef complexes were proposed in [11]. 

The work on constructive topological representations [28] introduces the stratified 
structure that is quite different from the topological complexes. This stratification is 
defined on n-dimensional solids using ‘natural’ topology based on the neighbourhood 
concept. It considers only the n-dimensional atoms and ignores the lower dimensional 
ones as well as the connectivity characteristics of the atoms and of the corresponding 
solid. Such a model can not be used for describing heterogeneous objects containing 
components of different dimensionalities. 

To specify non-geometric properties of objects, spatial subdivisions are also used 
in computer graphics and in finite element analysis (FEA) as the underlying structures 
for piecewise analytical descriptions of attribute functions. Usually a basic topological 
subdivision is selected, which can be described by a topological stratification [4, 17, 
32], a cell complex [18, 7], or a voxel model [6]. Different types of functions can be 
used to describe attributes [13, 24, 20, 34]. A detailed survey on modelling heteroge-
neous objects consisting of multiple materials can be found in [16].  

Constructive approaches are applied to the description of heterogeneous object 
models combining different geometrical representations. In the STC framework [31], 
a composite object is defined using a combination of layers each of which is de-
scribed by a geometric complex, which is homogeneous with respect to the represen-
tations of its components. A model for objects with fixed dimensionality and hetero-
geneous internal structure (i.e., multidimensional point sets with multiple attributes or 
constructive hypervolumes) was proposed in [26]. This model supports uniform con-
structive modelling of point set geometry and attributes using real functions of point 
coordinates.  

A feature based design methodology is represented in [27]. Under this methodol-
ogy, heterogeneous objects consisting of multiple materials are constructed by engi-
neering significant high-level components called form features and material features. 
Form features describe the shape of the objects and material features are used for 
modelling material variation. The relationships between form features and 
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material features in heterogeneous objects are examined in [27] along with construc-
tive feature operations. Set-theoretic operations for modelling functionally graded 
materials associated with a BRep geometry model are discussed in [33].  

Constructive Volume Geometry (CVG) [6] combines geometry and attributes in a 
systematic manner. The model is presented as an algebra of 3D spatial objects utiliz-
ing voxel arrays and continuous scalar fields for representing both geometry and 
photometric attributes (such as opacity, color, etc.). A distance field based approach 
for heterogeneous object modelling, in which the space is parametrized by distance to 
the geometry boundaries is proposed in [5].  

The HybridTree [2] is a constructive tree with leaves defined by a number of repre-
sentations. Both the function evaluation and the surface mesh generation are provided 
for modelled objects. Depending on a user query, corresponding conversions between 
representations are applied. A hybrid constructive tree in [8] has leaves with both im-
plicit and parametric representations. To polygonize the surface of a complex object, 
surface meshes of primitives are classified against the subtree defining function, 
trimmed, and then merged into the resulting mesh. However, both of these approaches 
do not support heterogeneous objects with components of different dimensionalities 
and do not provide a description of the topological structure of the object being mod-
elled.  

Some discussion and motivation for this work follow in the next section. 

3   Main Features of the Hybrid IC-Based Model 

From the careful examination of the literature mentioned above one is forced to con-
clude that the topological decomposition approach is not suitable for describing het-
erogeneous objects consisting of overlapping components which differ in their geo-
metrical representations and attributes, because the application of such an approach 
leads to the subdivision of the initial components with loss of the their initial repre-
sentations. In contrast, the constructive approach allows for the description of over-
lapping components but provides insufficient topological information about repre-
sented objects. In [1] we introduced a hybrid cellular-functional model based on the 
notion of an Implicit Complex (IC) which combines the advantages of both the topo-
logical and constructive representations. Thus it provides a valid topological descrip-
tion of heterogeneous objects and allows for the flexible combination of cellular and 
functional representations of both the geometry of objects and their attributes.  

Let us outline the main features of this framework. It allows for representing a het-
erogeneous object by a union of high-level components that are significant for a given 
application. For example, such components can describe mechanical parts or ani-
mated characters. We allow the components to overlap each other but we introduce 
special constraints on the description of the mutual dispositions of these components. 
Thus we provide the representation with a distinctive structure that can easily be re-
duced to a cellular topological subdivision. The intersections of the components are 
described by constructive methods which preserve the precision of the representation. 
The representation can be quite compact if it involves only those entities which are 
necessary for the descriptions of the initial components and their mutual dispositions.  
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In [15], we have shown how this framework can be exploited to represent some het-
erogeneous models without using set-theoretic operations. In this paper, we first concen-
trate on advancing the structure of an IC and then on developing the methodology for 
constructing the ICs especially using set-theoretic operations. Set-theoretic operations on 
polyhedral topological complexes have been discussed previously in [11]. Here we stress 
the specifics of these operations caused by the heterogeneous structure of ICs containing 
BRep and FRep components in particular. 

Data structures used for the descriptions of topological subdivisions of objects or 
their boundaries are typically represented by the adjacency graphs whose nodes 
correspond to vertices, edges, faces, connected volume regions or combinations of 
these, and whose links capture information related to adjacency, orientation, and 
ordering [30]. Instead of the frozen combination of the adjacency graphs optimized 
for a narrow range of applications we have elaborated more flexible data structures 
based on the concept of relations developed in discrete mathematics and widely 
used in computer science. Relations provide a unified description of various con-
nections between individual cells, collection of cells, and entire complexes. They 
are also used for assigning attributes. The use of well established operations on rela-
tions makes it possible to change the data structures dynamically thus adapting 
them to specific applications. Relations based tools allow us to realize various op-
erations on ICs in a  compact form. A flexible mechanism of dynamically creating 
and removing relations provides an IC programming implementation that is effec-
tive for the design of complicated assemblies as well as for working with cellular 
complexes and meshes. 

4   Implicit Complexes 

In this section we provide a brief description of the theoretical framework that is 
based on the Implicit Complex (IC) notion.  

4.1   The IC Basic Definition 

We consider a hybrid model defined in the Euclidian modelling space 3E as follows. 

Let 3Eg iq
i ⊂  be a closed point set called a cell, where i is its index number and qi is 

its dimension. Then, a geometric object D is defined as the union of cells iq
ig  under 

the following conditions: 

1) The boundary of each cell iq
ig  is the union of a finite number of cells of 

lower dimensions;  
2) Cells can overlap each other but the intersection of any two cells is either the 

union of a finite number of cells or is empty. (Note that we call the cells satisfying 
conditions 1 and 2 as properly joined cells.) 

3) Each iq
ig  is unambiguously described by some known geometric representa-

tion which provides a set of tools for geometrically and topologically correct discreti-
zation of the cell. So, a variety of representations can be used for the description of 
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the cell shapes. However, all of these representations should guarantee a conversion 
into a mesh described by a polyhedral complex.  

A collection K of cells satisfying the above conditions is called an implicit com-

plex (i.e.: N
i

iq
igK 1}{ == ). The dimension of the IC is the maximal dimension of its 

cells. In accordance with the above IC definition, polyhedral, cellular, and CW com-
plexes can also be represented in the IC framework.  

The above conditions actually ensure the ability to convert an arbitrary IC K into a 
polyhedral complex, which approximates both geometrically and topologically the 
object D being modeled thus ensuring the validity of the IC model. In fact, the reduci-
bility of each representation used into a polyhedral one guarantees a correct execution 
of any operation on objects described by the various representations. However, we 
strive to exploit advantages of the different types of representation. That is why we 
keep the initial representations for components of the model and use meshes only for 
the implementation of the various numerical procedures applied in topology analysis, 
computational geometry, and finite element analysis. Fig. 1 shows an example of an 
IC describing a hybrid model combining functionally represented (FRep) and bound-
ary represented (BRep) components.  

This IC consists of two 3D cells 3
bunnyg , 3

turtleg , three 2D cells 2
_ bunnysufrg , 

2
_ turtlesufrg , 2

zoneg  and a 1D cell 1
lineg . Geometric types of cells are explained below 

in Section 4.4. In this example, the 3D cell 3
bunnyg  describes the Bunny’s body (repre-

sented initially by a BRep) and the 2D cell 2
_ bunnysufrg  which represents its boundary 

defined by a triangular mesh. The turtle’s body (defined initially as an FRep) and its 

boundary are represented by a 3D cell 3
turtleg  and a 2D cell 2

_ turtlesufrg , correspond-

ingly. Finally, the intersection of the Bunny and the Turtle models, which forms a 

contact zone is described by a 2D cell 2
zoneg . The contact zone is illustrated by Fig 

1b. The boundary of the contact zone is described by the 1D cell 1
lineg . The cells 

2
_ bunnysufrg , 2

_ turtlesufrg  contain the cells 2
zoneg  and 1

lineg . 

The support of overlapping cells allows the insertion of components of a composite 
object into its IC model without the need for subdivision. The IC definition conditions 
are satisfied by including additional cells describing the mutual intersections of the 
components. This allows for the preservation of the initial representations of the com-
ponents, which is useful for heterogeneous object modelling. 

We denote the point set represented by a cell iq
ig  as || iq

ig . Correspondingly the 
point set union of all cells of the IC K is denoted by |K| and called a carrier of K. This 

term allows us to distinguish the discrete set of cells N
i

iq
igK 1}{ == from the point set 

∪
N

i

iq
igK

1
||||

=
= . Thus formally, the hybrid representation for a geometric object 

3ED ⊂  is defined as follows: || KD = , or }|||{ 3EKXXD ⊆Ω⊂∈= , where K  

is an implicit complex and Ω  is a modelling space. 



 An Implicit Complexes Framework for Heterogeneous Objects Modelling 7 

       

  a)     b) 

 

    c) 

Fig. 1. The unified hybrid model combining an FRep Turtle (courtesy of G. Pasko) and a BRep 
Bunny (Stanford 3D Scanning Repository); a) The general view of the model; b) The contact 
zone on the surfaces of both objects; c) the IC structure and the types of the cells; the IC con-

sists of the following cells 3
bunnyg , 3

turtleg , 2
_ bunnysufrg , 2

_ turtlesufrg , 2
zoneg , 1

lineg  (cell types 

are described in 4.4)  
 

An implicit complex provides a consistent description of both the geometry and the 
topology of the modelled object. The geometry is represented by the geometry of the 
individual cells and the topology is described by means of the relations between cells.  

4.2   The IC Topology 

The main relations defining the topology of an IC are the boundary relation and the 
containment relation. According to the first two conditions of the IC definition the 
mutual disposition of any of the IC cells can be evaluated through queries to its main 
relations.  
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We denote a boundary relation between p-dimensional cells and s-dimensional 

cells of an IC as psRb , ps < . By definition the boundary relation psRb  consists of a 

set of pairs ( s
j

p
i gg , ) where the point set || s

jg  belongs to the boundary of the point 

set || p
ig and does not lie in the interior of any other boundary cell of p

ig . The con-

tainment relation between p-dimensional cells and s-dimensional cells of an IC is de-

noted by psRc , ps ≤ . The pair ),( s
j

p
i gg  belongs to psRc  if  |||| p

i
s
j gg ⊂  and 

|| s
jg  does not lie on the boundary of || p

ig .  

For the example shown in Fig. 1 the IC topology is described by the following rela-
tions: 

)},(),,{( 2
_

32
_

332
turtlesurfturtlebunnysurfbunny ggggRb = ; )},{( 1221

linezone ggRb =   

)},(),,{( 22
_

22
_

22
zoneturtlesurfzonebunnysurf ggggRc = ; 

)},(),,{( 12
_

12
_

21
lineturtlesurflinebunnysurf ggggRc =  

 
For an unambiguous definition of a 3D IC, it is necessary to describe three bound-

ary relations },,{ 322110 RbRbRbRb =  and nine containment relations }{ psRcRc = , 

( ps ≤ , p=1,2,3, s=0,1,2,3) for all cells of dimensions from 0 to 3. Other boundary 

relations can be calculated using the composition operation (denoted by a symbol 

‘ D ’). For example, 102120 RbRbRb D= . Thus the description of an implicit complex K 

consists of the collection N
i

iq
igG 1}{ ==  of cells and the sets of the corresponding 

boundary Rb relations and containment Rc relations, i.e. >=< RcRbGK ,, . For nota-
tional convenience we use the IC name K as a prefix for indicating to what complex 

some set of cells or relation belongs. For example, K.G, psRbK. , psRcK. .  
Some additional relations can be useful for implementing those operations on the 

ICs that require a faster access to the information about the mutual disposition of its 
cells. The most often used additional relations are the co-boundary, the “to be con-
tained”, the incidence and the adjacency relations. These relations can be derived 
from the boundary and the containment relations using various operations on rela-
tions. In particular, considering the relations between p-dimensional and s-
dimensional cells of an IC K we can conclude that the co-boundary relation denoted 

as psRcb  is the inversion of the corresponding boundary relation spRb , so 
1)( −= spps RbRcb  ( 3,2,1,2,1,0, ==< spsp ), and the “to be contained” relation 

denoted as psRcc is the inversion of the corresponding containment relation spRc , 
1)( −= spps RcRcc . The incidence relation denoted as 

psRin , 3,2,1,0,3,2,1,0, ==≠ spsp is defined as follows: 

⎪⎩

⎪
⎨
⎧

<
>= − spifRb

spifRb
Rin

sp

ps
ps

,)(

,
1

.   
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The adjacency relation denoted by pspRd , 3,2,1,0,3,2,1,0, ==≠ spsp is defined 

as follows. A pair ),( p
j

p
i gg  of p-dimensional cells of the complex K  belongs to the 

adjacency relation pspRd if there exists a cell Kg s
l ∈ , ps ≠ which is incident to 

both the cells p
ig  and p

jg . The adjacency relation pspRd  is calculated as the compo-

sition of the corresponding incidence relations psRin and spRin , 
sppspsp RinRinRd D= . Note, that if ps < then 1)( −= pspspsp RbRbRd D , otherwise 

.)( 1 spsppsp RbRbRd D−=   

Note that in principle it is not necessary to have all the possible relations explicitly 
described and stored. As to queries to the relations, they can be evaluated using the 
described dependences between relations. If needed, the additional relations can be 
dynamically computed on the basis of the main relations and then discarded (if not 
needed again). 

4.3   Relationships between Implicit Complexes 

Here we define relations between ICs and introduce several types of implicit com-
plexes which are to be used further for describing different algorithms. 

One can define not only relations within the IC cells but also between different 
complexes. They describe the mutual disposition of cells belonging to different ICs 
and are introduced by analogy with the corresponding relations between the cells of a 
single complex. So we introduce the equivalence relation and the containment rela-
tions between implicit complexes.  

Let us consider two ICs A and B. We denote the cells of these ICs as 
I
i

iq
iaGA 1}{. ==  and J

j
jr

jbGB 1}{. == . Then we denote the equivalence relation between 

the s-dimensional cells of A and B as s
ABRq , and we denote the containment relation 

between the p-dimensional cells of A and s-dimensional cells of B by ps
ABRc , ps ≤ . 

By our definition the relation s
ABRq  consists of pairs ),( p

j
p
i ba  of equivalent cells. We 

assume that any two cells are equivalent if they have the same carrier. The relation 
ps
ABRc  consists of pairs ),( s

j
p
i ba  where cells GAa p

i .∈  and GBbs
j .∈ which comply 

with the following conditions: (i) p
ia  contains s

jb ; (ii) the carriers of cells p
ia  and s

jb  

are not equal; (iii) s
jb  does not belong to the boundary of p

ia . These relations are 

used by various operations on the implicit complexes. 
Next, we introduce the concept of a subcomplex, which is a means of aggregation 

inside the IC. Formally, an IC L, is called a subcomplex of IC K, if the collection of 
cells of IC L is a subset of the collection of cells of IC K.  Correspondingly the com-
plex K is called a supercomplex of L. The equivalence relations unambiguously de-
scribe the complex L on the basis of its supercomplex K. Each subcomplex is a 
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subset of the entire set of the given complex. Note that not every collection of the 
cells of a complex K is a subcomplex of K but only the collection which satisfies the 
conditions of the IC definition. For example, the following cells collections define the 
subcomplexes of the IC shown in Fig. 1: 

},{ 2
_

3
1 bunnysurfbunny ggL = , },{ 2

_
3

2 turtlesurfturtle ggL = , },{ 12
3 linezone ggL = , 

},,,{ 122
_

3
4 linezonebunnysurfbunny ggggL =  

We also introduce the concept of properly joined complexes. We call two implicit 
complexes properly joined if their cells altogether satisfy conditions 1 and 2 of the IC 
definition. Thus for the IC based model shown in Fig. 1, the subcomplexes 1L  and 3L  

introduced above are properly joined but 1L  and 2L  are not because their cells overlap 
each other but their intersection is not represented by any cells of the complexes.  

Another very important type of IC is a nested IC. Implicit complex B is nested into 

IC A if for any cells p
ia  and s

jb  which have common internal points it follows that 

p
ia  contains s

jb . According to our definitions, if the IC B is nested into the IC A then 

the ICs A and B are properly joined. For the IC shown in Fig. 1 the subcomplex 3L  is 

nested into the other subcomplexes 1L , 2L , and 4L . 
Note, that  if the intersection of the carriers of any two ICs A and B is equal to the 

carrier of an IC C which is nested into both ICs A and B, then the ICs A, B, and C al-
together from a group of properly joined complexes. Let us again consider the exam-
ple shown in Fig. 1. The IC 1L , describing the model of the Bunny, and the IC 2L , 

describing the model of the Turtle, are not properly joined. The intersection of the 
Bunny with the Turtle is represented by the IC 3L  which is nested into ICs 1L  and 

3L . The collection of the cells belonging to all the ICs 1L , 2L  and 3L  satisfy the con-

ditions of the IC definition and form the entire hybrid model combining the Bunny 
with the Turtle. Further we exploit this important property of nested complexes for 
the realization of the set theoretic operations on objects represented by ICs. 

4.4   The IC Geometry 

In [1] we have proposed a basic IC structure. Here we introduce more elaborated 
structural classification in the form of five types of IC cells that differ in their geomet-
ric representations but are topologically uniformly related to each other: 

- The P-cell, which is an explicit cell representing a simple polyhedron.  
- The B-cell, which is a cell representing a manifold defined by its boundary. B-

cells describe segments of parametric curves, patches of parametric surfaces and 
boundaries defining 3D solids. A 1D (2D) B-cell is defined by its supporting curve 
(surface) and by its oriented boundary. A 3D B-cell is defined by its oriented 
boundary only. In the general case the boundary of a B-cell can consist of cells of 
all the other types supported in the IC framework.  

- The F-cell, which is an implicit cell described by the FRep that is a constructive 
representation by real-valued functions in the form of an inequality 0)( ≥XF  
[25]. We restrict a valid variety of 2D and 1D FRep objects by s-dimensional  
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F-cells (s<3) to be those which are represented as subsets of the boundaries of 3D 
manifolds. Thus each 2D F-cell is defined as a patch of an implicit surface which 
is the boundary of an FRep 3D manifold M. It is described by a pair of continuous 
real functions of point coordinates ),( MFF , such that the point set of the cell  is 

described by the inequality 0)( ≥XF  and the underlying 3D manifold is defined 

in the form 0)( ≥XFM . Accordingly, each 1D F-cell is defined as a segment of 

an implicit curve belonging to the boundaries of two FRep 3D manifolds M1 and 
M2. So such a cell is described by a triple of continuous real functions of point co-
ordinates ),,( 21 MM FFF  representing the cell and the underlying 3D manifolds. 

- The C-cell, which is a composite cell aggregating cells of various types. Each C-
cell is defined as a carrier of an implicit complex T differing from the complex K 
containing this C-cell. The complex T can consist of the cells of all types sup-
ported in the IC framework. In a particular case T can be a simplicial or a polyhe-
dral mesh. The complex T is not a subcomplex of K. Its cells are not properly 
joined with respect of the cells of K.  

- The T-cell which is a cell described by a constructive tree. Its leaves represent 
objects described by cells of all the other types. The tree nodes represent opera-
tions admissible for the IC – in particular, some bijective geometric transforma-
tions, non-regularized set-theoretic operations and trimming by 3D manifolds. The 
T-cells allow for the description of the result of applying set-theoretic operations 
to cells of different types without the need for converting between representations.  

 
Various types of cells are illustrated by the example shown in Fig. 1. In the IC 

based model combining the BRep Bunny and the FRep Turtle, a 3D B-cell describes 
the Bunny’s body and a 2D C-cell represents its boundary. The Turtle’s body and its 
boundary are represented by a 3D F-cell and a 2D F-cell, correspondingly. The con-
tact zone is described by a 2D C-cell. The boundary of the contact zone is described 
by the 1D C-cell. 

4.5   An Illustrative Example 

Let us consider an example illustrating both the geometric and topological features of 
an IC based model with cells of different types and with basic relations between them. 
Figure 2 shows a 2D object consisting of two 2D components (the rectangles DEQS 
and the disk LHKF) and a 1D component (the segment OM). We assume that the 
components are represented by different methods and have different non-geometric 
properties (attributes). One of the possible IC representations of this heterogeneous 
model is described by the complex K consisting of the following cells: 

1. 2D cells: the rectangle 2
DEQSg , the disk 2

LHKFg , and the half-disk 2
LKFg ; 

2. 1D cells: the closed polyline 1
DEQSg , the circle 1

LHKFg , the arc 1
KFLg , and the 

segments 11
,

1
, ONOMKL ggg ;  

3. 0D cell: the points 00
,

0
,

0
,

0
, MNOLK ggggg .  
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Fig. 2. A 2D object consisting of two 2D components (the rectangle DEQS and the disk LHKF) 
and a 1D component (the segment OM) 

 

According to the IC definition, the complex K includes the cells representing the 

initial components 2
DEQSg , 2

LHKFg , and 1
OMg , their boundaries 1

DEQSg , 1
LHKFg , 0

Og , 

and 0
Mg , and the cells describing the mutual intersections between the listed initial 

components. For example, the cell 2
KFLg  represents the intersection of the initial 

components 2
DEQSg , 2

LHKFg . We assume that initially the rectangle DEQS is defined 

by a boundary representation, the disk LHKF is described functionally and the seg-
ment OM is specified explicitly by its end points. Consequently we represent these 

components by the B-cell 2
DEQSg , the F-cell 2

LHKFg  and the P-cell 1
OMg , correspond-

ingly. Other cells are added to satisfy the constraints of the IC definition. Table 1 
shows these cell types and descriptions. 

0D cells 

1D cells 

2D cells 
rectangle
DEQS
B-cell 

segment
KL

T-cell

arc
KFL
T-cell

circle
LHKF
F-cell

polyline
DEQS
C-cell

half-disk 
LKF
T-cell

disk
LHKF
F-cell

segment
OM

P-cell

segment
ON

P-cell 

point
O

P-cell 

point
N

T-cell

point
M

P-cell

point
K

T-cell

point
L

T-cell

 

Fig. 3. The graph representing the boundary relations for an IC of the object shown in Fig. 2 
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Table 1. Types and descriptions of the cells of the IC representing the object shown in Fig. 2 

object cell  description 
rectangle
DEQS

2D B-cell 
2
DEQSg

boundary representation 

disk LHKF 2D F-cell 
2
LHKFg

function representation 
22 )( iidisk xcenterxRF −−=

half-disk LKF 2D T-cell 
2
LKFg

constructive representation 
|||||| 222

LHKFDEQSLKF ggg ∩=

polyline 
DEQS

1D C-cell 
1
DEQSg

mesh representation 

circle LHKF 1D F-cell 
1
LHKFg

function representation ),( diskcircle FF , where 
2)( diskcircle FF −=

arc KFL 1D T-cell 
1
KFLg

constructive representation  
|||||| 211

DEQSLHKFKFL ggg ∩=

segment KL 1D T-cell 
1
KLg

constructive representation  
|||||| 211

LHKFDEQSKL ggg ∩=

segment OM 1D P-cell 
1
OMg

a simple line segment 

segment ON 1D T-cell 
1
ONg

constructive representation  
|||||| 211

DEQSOMON ggg ∩=

point M 0D P-cell 
0
Mg

3D coordinates 

Point O 0D P-cell 
0
Og

3D coordinates 

point N 0D T-cell 
0
Ng

constructive representation  
|||||| 110

DEQSOMN ggg ∩=

point K 0D T-cell 
0
Kg

constructive representation  
)(__|||||| 110 FHplanehalfupperggg LHKFDEQSK ∩∩=

point L 0D T-cell 
0
Lg

constructive representation  
)(__|||||| 110 FHplanehalflowerggg LHKFDEQSL ∩∩=
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0D cells 

1D cells 

2D cells 
rectangle 
DEQS
B-cell

segment
KL 

T-cell

arc
KFL
T-cell

circle 
LHKF
F-cell

polyline 
DEQS
C-cell

half-disk 
LKF 
T-cell

disk 
LHKF
F-cell

segment
OM 

P-cell

segment
ON

P-cell

point 
O

P-cell

point 
N

T-cell

point 
M

P-cell

point 
K

T-cell

point 
L

T-cell

 

Fig. 4. The graph representing the containment relations for the IC of the object shown in Fig.2 

Note, that if some geometric entities (for example, points S, D, E, and Q) describ-
ing shapes of the initial components are not essential for the representation of mutual 
dispositions of the components, then the resulting IC does not include them. 

Figure 3 shows a graph representing the basic boundary relations in the IC K. Here 
the graph nodes represent the cells of the IC K, and the graph edges represent connec-
tions between cells in the boundary relations.  

The containment relations for the IC K are represented by a graph shown in the 
Figure 4. Here once again the graph nodes represent the cells of the IC K, and the 
graph edges represent the connections between the cells in the containment relations. 

4.6   The Attribute Model 

In this section we consider a cellular-functional representation of the attributes associ-
ated with an IC. The attributes of an object and its geometry are described independ-
ently. Each attribute Λ  is described by a set ΛN  of its values embedded into a multi-

dimensional real number space Λℜm  of a proper dimension Λm . The interpretation of 

an attribute's value depends on its nature and specifics. For the sake of uniformity, we 
assume that the value set ΛN  of each attribute is supplemented with a special 

“empty” value θ and so all the attributes are defined at each point of the modelling 
space Ω . The attribute values are assigned to geometric object points described by the 
IC K using a collection of attribute functions }{ jSS ΛΛ = , j=1,…, J, and a set of at-

tribute relations },,,{ 0123
ΛΛΛΛΛ = RsRsRsRsR . Thus, an attribute Λ  of an IC K is rep-

resented as >=<Λ ΛΛ RS , . Each function jSΛ of an attribute Λ  maps the modelling 

space Ω  into the attribute value set ΛN , ΛΛ →Ω NS j : . Attribute functions can be 

analytic, piecewise analytic or be defined by an interpolation method [1]. Note that 
for defining interpolated attribute functions, we can use a space  
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partition different from the one associated with the object. This means in the general 
case introducing another complex different from K. Note that it is possible to intro-
duce various operations on attributes in our model. As attribute value sets belong to 

mathematical spaces mℜ , all these operations are reduced to operations on real num-
bers and vectors. The attribute functions are defined on the entire modelling space. So 
we can construct new attribute functions on the basis of known attribute functions 
using various mixing functions.  

The relations pRsΛ  (p=0, 1, 2, 3) associate functions of an attribute Λ  with cells of 

the IC K, that is ΛΛ ×⊂ SGRs pp , where pG is a set of all p -dimensional cells  of the 

complex K . If p
j

p
i RsSg ΛΛ ∈),(  then the value of the attribute Λ  at any point 

|| p
igX ∈  is defined as )(XS jΛ .  

Only one function of each attribute can be associated with a cell. Taking into ac-
count that IC cells can overlap each other, we propose priority and additive schemes 
for calculating the value of an attribute Λ  at an arbitrary point X  of the object repre-
sented by the IC K. According to the priority scheme, we look through all the cells 
associated with the attribute Λ  and containing the point X  and select one cell of the 
lowest dimension which does not contain other cells associated with Λ  within it. The 
value of the attribute function defined on that cell is used for calculating the attribute 
value at the given point. According to the additive scheme the value of the attribute 
Λ  at the point X  is calculated as a blend of the attribute functions associated with all 
cells containing the point X.  

4.7   Comparison with Other Approaches 

Let us compare the IC based approach with the topological decomposition and the 
constructive representation using a simple example shown in Fig. 5. This example 
illustrates the construction of a heterogeneous object combining a white rectangle and 
a dark grey disk. We propose that the area where the rectangle intersects the disk be-
comes grey in color. If we use the topological decomposition then we should repre-
sent the combined object as a collection of non-intersecting cells. Thus we lose the 
initial representations of the components. However the topological decomposition 
provides full information about the topology of the object assembly which is very 
important for the numerical analysis. The application of the constructive approach 
results in the tree-like representation shown in the bottom part of Fig. 5. The tree pre-
serves the descriptions of the initial objects but does not contain any information 
about mutual disposition of the components. Finally, the IC represents the combined 
object by a collection of properly joined overlapping cells. The IC preserves the initial 
descriptions and provides full topological and geometrical information about the as-
sembly. The intersection of the initial components is described by the T-cell repre-
sented by a constructive tree. Thus the ICs allow us to combine different approaches 
to modelling heterogeneous objects and to describe complicated models consisting of 
a number of components defined by various geometrical representations. 
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Topological 
decomposition

Constructive 
representation

Implicit complexes 

    

∩∪

∪ =

 

Fig. 5. A comparison of the different approaches to heterogeneous object modelling 

4.8   Model Implementation 

In this section we describe a software implementation for the cellular-functional mod-
elling of heterogeneous objects within an object-orientated framework. Let us outline 
here only the principal classes which are directly derived from the presented theoreti-
cal description. 

The basic IComplex class represents an implicit complex data structure. Its attrib-
utes represent six boundary relations and nine containment relations as well as refer-
ences to the cell’s description. Only the base relations are permanently supported, 
while other relations are calculated automatically by means of private methods of the 
ICcomplex class. The methods of the IComplex class realize the operations on the 
cells of the complex (see Section 5) as well as operations on ICs (see Section 5 and 
6). The IComplex class includes operations for modifying the relations as well as in-
quiry operations on the relations. 

Each relation is described by an object of the Relation class which contains all the 
pairs of numbers of related cells. The operations of the Relation class allow us to get 
the indices of all the related cells as well as to add and delete pairs of cells. 

The IC geometry within the IComplex class is specified using objects of classes in-
herited from the abstract Shape class that contains virtual operations for defining the 
point membership as well as for rendering and discretization. 

The ICattribute class represents an attribute data structure. It contains attribute re-
lations and references to the descriptions of the attribute functions represented by 
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classes inherited from the abstract template class ICFunction. The objects of the IC-
complex and ICattribute classes are also linked by mutual references. 

5   Operations in the IC Framework 

In this section we introduce operations on both cells and entire implicit complexes. 
These operations are especially important in the context of constructing and manipu-
lating implicit complexes.  

5.1   Some Basic Operations in the IC Framework 

Here we consider some basic operations such as adding and removing cells, adding 
attributes, etc. These operations will allow us to design various computational algo-
rithms and to introduce some high-level functionality. For each operation, there are 
constraints on the input data that should be checked before their actual evaluation. 
These basic operations are implemented as procedures or procedure-quires.  

The procedure add_cell adds a new cell to an IC. A cell rg  can be added to IC K if 
rg  is properly joined to all the cells of K and the boundary of rg  is represented as 

the union of cells of K. The input data of this procedure includes the cell geometry 
description and the list of cells of K related to the cell being added including: bound-
ary cells, cells containing the added cell, and cells lying inside the added cell. 

The procedures add_attribute, add_function, and set_attribute are used to establish 
attributes of the ICs. The first of these procedures adds a new attribute to an IC, the 
second one adds a function to an IC’s attribute, and the last binds cells of the IC with 
attribute functions.  

The procedure remove_cell deletes a cell from an IC. It follows from the IC defini-

tion that a cell r
cg  can not be deleted if at least one of the following conditions are 

satisfied: (i) the cell r
cg  has co-boundary cells in K; (ii) the cell r

cg  represents the 
intersection of some other cells of K. These conditions are checked automatically us-
ing IC relations. The procedure cut_cell removes a cell with all its boundary cells 
from an IC. It is implemented under the same restrictions as the remove_cell opera-
tion.  

The following procedure-queries are used to acquire cells relationship information: 
get_boundary_cells, get_coboundary_cells, get_adjacent_cells, get_cells_inside, and 
get_containing_cells. These procedures take the dimension and the identifiers of an 
input cell as well as the dimension of the queried cells and return the list of the IC 
cells linked with the input cell by means of the corresponding relation.  

5.2   The Basic Geometric Operations 

In this section we introduce the basic geometric operations necessary for IC construction, 
rendering and numerical calculations of different kinds, such as IC transformation, the 
evaluation of a point membership and the intersection of an IC with a ray.  
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The IC_transform function implements bijective geometric transformations on ICs 
including affine transformations and nonlinear bijective transformations. This func-
tion is implemented by applying the corresponding transformation to a given cell.  

    The Cell_ray_intersection function computes the point of intersection of a given 
ray with a given cell. The Cell_point_classify function being applied to a given indi-
vidual cell realises the point membership classification of the cell. These functions are 
optimally implemented for each particular cell type. Similar functions dealing with an 
entire IC have also been implemented: these are the IC_ray_intersection function 
dealing with intersection of the given ray with the object represented by the given IC, 
and the get_cell_bypoint function evaluating the point membership classification for 
that object. 

The implementation of the IC_ray_intersection function is based on applying the 
Cell_ray_intersection function to the individual cells of the IC. The cells are exam-
ined in the order of increasing dimensionality. Among the cells of the same dimen-
sionality we first analyze those which do not contain other as yet unprocessed cells. 
The processing of cells stops as soon as the first intersection with the ray is found. 
The get_cell_bypoint function is implemented in a similar manner. It returns the num-
ber of the first found cell for which the Cell_point_classify test gives a positive result. 

5.3   The Subdivision of ICs 

The IC_meshing procedure implements the conversion of an IC representation into a 
simplicial one. The discretization of IC models is guaranteed by the IC definition ac-
cording to which the appropriate mesh generation methods have to be available for all 
types of IC cells. The discretization of an implicit complex K is implemented as an 
iterative process. The mesh generation of each kind of cell is implemented using spe-
cific meshing algorithms. An extensive survey of discretization methods is presented 
in [9].  We subdivide IC cells in the order of increasing dimensionality. Among the 
cells of the same dimensionality we first subdivide those which do not contain other 
as yet unprocessed cells. Thus, at the moment of the meshing of a cell we already 
know the discretization of its boundary and the subdivision of all the cells lying inside 
the one being considered. Then we subdivide the cell into mesh elements such that 
they are compatible with other meshes which already belong to it. Corresponding in-
cremental mesh generation approaches that allow for preserving existing mesh ele-
ments can be found in [2,14] and in the references contained in these works.                                                              

For the purpose of illustration let us consider the application of an IC-meshing op-
eration to the object introduced in Section 4.7. The corresponding meshes are shown 
in Fig. 6. According to the described meshing algorithm initially all the nodes 

00
,

0
,

0
,

0
, MNOLK ggggg  are included into the mesh and then other cells are subdivided in 

the following order: 

1) 1D cells 11
, ONKL gg , 1

KFLg  (where 1
KFLg  is subdivided taking into account the 

contained point 0
Og ) 

2) 1D cell 1
OMg (is compatible to the subdivision of the cell 1

ONg ); 

3) 1D cell 1
DEQSg (is compatible to the subdivision of the cell 1

KLg  and the point 

0
Og ); 



 An Implicit Complexes Framework for Heterogeneous Objects Modelling 19 

4) 1D cell 1
LHKFg ( is compatible to the subdivision of the cell 1

KFLg ); 

5) 2D cell 2
LKFg ; 

6) 2D cell 2
LHKFg  (is compatible to the subdivided contained cell 2

LKFg  it contains); 

7) 2D cell 2
DEQSg  (is taking into account the subdivision of the cells 2

LKFg  and 

1
ONg ). 

The last three steps of the meshing procedure are shown in Fig. 6 
 

 

Fig. 6. The sequence of the 2D cell discretization steps for the IC containing overlapping cells 
(see Section 4.7 for a detailed description of the IC structure) 

5.4   The IC Simplification Operations Dealing with Cells 

Here we introduce operations Removing_embedded_cells and Merging_cells that re-
duce a number of cells of an IC preserving the carrier of the complex as well as the 
information representing its attributes and relations with other complexes. These sim-
plification operations can be applied to an individual cell of an IC, to all the cells of 
the same dimensionality and to all the cells of a particular IC. 

The operation Removing_embedded_cells removes all the cells that are contained 

in other cells with the same properties. We call an r-dimensional cell r
ig  of an IC K 

an embedded cell if the IC includes an s-dimensional cell s
jg  ( rs ≥ ) containing r

ig . 

The embedded cell r
ig  can be removed from K if the following conditions are satis-

fied: (i) both the cell r
ig  and the cell s

jg  that contains it have the same attribute val-

ues; (ii) all the cells containing r
ig  also contain s

jg ; (iii) all the co-boundary cells of 

r
ig  belong to the set of co-boundary cells of s

jg . 

The operation Merging_cells combines two cells with identical properties. Two r-

dimensional cells r
ig , r

jg  of the IC K can be merged into one if the following condi-

tions are complied with: (i) the shape of the point set |||| r
j

r
i gg ∪  can be described by 

one of the representations supported by the IC. This means that it is possible to con-

struct the cell r
mg  such that |||||| r

j
r
i

r
m ggg ∪= ; (ii) the boundary of r

mg  is represented 
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by a subset of the union of boundary cells of r
ig  with boundary cells of r

jg ; (iii) the 

cells r
lg , r

jg  have identical values for each attribute defined on K . 

The operation of merging cells r
ig , r

jg  includes the following steps: 

1) Adding r
mg  to K. Note that the cells r

lg , r
jg  lie inside r

mg  and the boundary 

cells of r
lg , r

jg  which do not belong to the boundary of r
mg  are contained in r

mg ;  

2) Deleting the cells r
ig , r

jg  from K by means of the remove_cell operation; 

3) Removing redundant cells contained in r
mg  by applying the Remov-

ing_embedded_cells operation.  

We illustrate the Removing_embedded_cells and Merging_cells operations with an 
example of simplification of the complex shown in Fig.7. The initial IC K consists of 
two 2D cells (rectangles ABEF and BCDE), seven 1D cells (segments AB, BC, CD, 
DE, EF, FA, BE) and six 0D cells (points A, B, C, D, E, F). First we merge the 2D 
cells. We assume that both 2D cells have the same attributes. So we get a new com-
bined 2D cell ACDF bounded by the segments AB, BC, CD, DE, EF, FA. The seg-
ment BE does not belong to the boundary of the new 2D cell, so it is registered as 
being contained in ACDF. Then we merge the 1D cells assuming that all the segments 
have the same attributes. According to the rules imposed by the Merging_cells opera-
tion we can merge all the boundary segments of the cell ACDF but we can not merge 
the segment BE with other segments because they have the co-boundary 2D cell but 
BE does not. After merging the 1D cells we get an IC consisting of one 2D cell 
ACDF, two 1D cells (the contour ACDF and the segment BE), and six 0D cells.  

 

                          a)                                     b)                                     c) 

E DF

A B C

DF

A C

E DF

A B C

 

Fig. 7. Example of IC simplification. a) the initial IC; b) the simplified IC in the case where BE 
has the same attribute value as the cells ABEF and BCDE; c) the simplified IC in the case 
where the attribute values of the cells BE, ABEF and BCDE are different. 

 

After that we apply the  Removing_embedded_cells function to the resulting IC as-
suming that the 0D cells have the same attribute values as the segments. Let us con-
sider two cases depending on the attribute value assigned to the segment BE. In the 
first case we assume that the segment BE has the same attribute value as the 2D cells 
of the IC K. In this case we apply the Removing_embedded_cells operation to BE and 
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then to all the 0D cells. As a result we get an IC consisting of one 2D cell and one 1D 
cell, as shown in Fig.7b. In the second case we assume different attribute values for 
the segment BE and the 2D cells of the IC K we cannot remove BE. In this case by 
applying the Removing_embedded_cells operation to the IC nodes we delete the 
points A, C, D, F as embedded in the 1D cell ACDF. However, we cannot remove the 
points B and E because they do not satisfy the third conditions of the Remov-
ing_embedded_cells operation. Thus in this case we get the simplified IC consisting 
of one 2D cell, two 1D cells, and two 0D cells, as shown in Fig.7c. Here the 1D cell 
BE is registered as being contained in the 2D cell ACDF and the 0D cells B and E are 
registered as being contained in the 1D cell ACDF.  

5.5   Summation Operations on Properly Joined Complexes 

Let us remind the reader that we call two implicit complexes properly joined if their 
cells altogether satisfy conditions 1 and 2 of the IC definition. The summation opera-
tion on such ICs is defined as follows. Given any two properly joined implicit com-
plexes C and T, the sum of C  and T  is a complex M consisting of all the cells of the 
complexes C  and T , this sum is denoted as TCM ⊕= . The resulting IC M is prop-
erly joined to the complexes С and T. The summation operation is used for construct-
ing ICs and for the realization of the set-theoretic operations on objects represented by 
ICs. 

This algorithm described further is implemented as a procedure IC_adding which 
takes two initial ICs altogether with the equivalences and the containment relations 
between them and returns an IC consisting of all the cells belonging to the initial ICs. 
This procedure also creates the relations between the resulting IC and the initial ICs. 
These relations are used for establishing the attributes and can also be required for the 
implementation of some other operations on these complexes.  

The steps of this algorithm are as follows: 

1) The cells of С are copied into the initially empty IC M, and the equivalence rela-
tions between the ICs M and C are created. 

2) Those cells of T which do not have equivalent cells in C are added to M. At the 
same time the equivalence relations between the ICs M and T are created. 

3) The boundary relations and the containment relations of M are automatically 
formed on the basis of the same relations defined on the complexes T and C using 
the equivalence relations and the containment relations between these initial ICs. 

In doing so, we obey the following rules. The cells p
ig  and s

jg  of IC M are con-

nected by the boundary relations of M if their equivalent cells in the initial ICs are 
themselves associated by the boundary relation defined on either IC C or IC T. 

The pair ),( s
j

p
i gg  belongs to the containment relation on M, if either (i) both cells 

p
ig  and s

jg  have equivalent cells in the same complex T or C, and are associated 

within that complex through the containment relation or (ii) one of the cells p
ig  

and s
jg  has one equivalent cell in T and another in C, and they are related through 

the containment relation between the complexes T and C.  
4) Finally, the containment relations between the resulting complex M and the initial 

complexes Т and С are formed only if they are required for the implementation of 
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some other operations on these complexes. The containment relations between the 

ICs M and C are constructed according to the following rule. If the pair ),( s
j

p
i gg  

belongs to the containment relation in the IC M and the cell s
jg  has an equivalent 

cell s
kc  in C, then we add the pair ),( s

k
p
i cg  to the containment relation between the 

ICs M and C.  The relations between the ICs M and T are constructed in a similar 
manner. 

5) Attributes are established on the IC M by combining the attributes defined on the 
initial complexes C and T using an appropriate mixing function. Suppose an at-
tribute Λ is defined on both the ICs C and T. To set this attribute on M we look 

through all the cells of M, and for each cell r
mg  of M we find its equivalent cells in 

the complexes C and T. If r
mg  has only one equivalent cell, then it inherits an at-

tribute function from this cell. Otherwise, the attribute function is calculated by 
blending the attribute functions defined on the cells of the ICs T and C equivalent 

to the cell r
mg . 

6   The Set-Theoretic Operations on Objects Described by ICs 

Set-theoretic operations are the main mechanism for constructing composite geomet-
ric objects starting from more primitive ones. Set-theoretic operations applied to sol-
ids, point sets, cellular and geometrical complexes have been discussed previously in 
[3, 11, 29, 31, 32]. Here we address the specifics of these operations related to the 
heterogeneous structure of ICs containing overlapping components with different rep-
resentations. 

In the IC framework, we introduce the union and intersection operations on ICs 
with attributes. Given two implicit complexes A and B, the intersection of A and B is 
an implicit complex С whose carrier is equal to the set-theoretic intersection of the 
carriers of A and B, BAC ∩= . The union of two implicit complexes is a complex 
whose carrier is equal to the set-theoretic union of the carriers of the initial com-
plexes.  We denote the union operation as BAC ∪= .  Note that we use the non-
regularized set-theoretic operations.  

The difference operation is more problematic as a mere set-theoretic difference of 
the carriers results in non-closed objects. So we consider a restricted version of the 
difference operation, namely, trimming with a 3D manifold. Let the IC B represent a 
3D manifold; then the result of trimming the IC A by the complex B is a complex C 
whose carrier is equal to the set-theoretic intersection between the carrier A and the 
point set described as the closure of the inversed carrier of B (that is the cavity in the 
universal solid space). We denote this operation as BAC −= .  

We outline four procedures for the implementation of the set-theoretic operations. 
Each of these takes two input ICs A and B, and returns an IC C. The intersection and 
the trimming operations are implemented by the procedures IC_intersection and 
IC_trimming, correspondingly. There are two procedures implementing the union 
operation, namely, IC_union and IC_subtractive_union. 

Next we consider how to construct an IC C describing the result of the set-theoretic 
operations on the carriers of A and B. First we will consider the intersection operation 
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as other operations rely on it. Then we describe algorithms for the trimming and the 
union operations. Finally, we consider how to establish the attributes of the resulting 
IC C combining those defined on the initial complexes A and B.  

6.1   The Intersection Operation 

Here we outline the implementation of the IC_intersection operation. We denote the 

cells of the IC’s as I
i

iq
iaGA 1}{. == , J

j
jr

jbGB 1}{. ==  and L
l

ls
lcGC 1}{. ==  respectively. 

By our definition, the carriers of the implicit complexes A, B, and C, that represent  
the intersection of A and B, have to satisfy the condition |||||| BAC ∩= . Thus  

the carrier of C is formed by the point sets |||| jr
j

iq
i ba ∩ which we denote as  

|| jiba . Let V be the collection of all such pairs belonging to |C|. Analyzing the inter-

section of the two arbitrary point sets || jiba , || mlba  of V, one can note that accord-

ing to the IC definition ∪
IK

k
kli aaa

≤

=
=∩

1
|||||| , ∪

JN

n
nmj bbb

≤

=
=∩

1
|||||| . Therefore 

)|||(|||||||||
1 111
∪∪∪∪
N

n
n

K

k
k

N

n
n

K

k
kmlji babababa

= ===
∩=∩=∩ . Thus the intersection of 

any two point sets of V is equal to the union of the point sets of the same collection. 
This means that the collection V satisfies the second condition of the IC definition. 

However some of the point sets ji ba  can be dimensionally heterogeneous. Such 

point sets have to be subdivided into several dimensionally homogeneous connected 
components. Thus, the general procedure for implementing the intersection operation 
on ICs can be described by the following pseudocode:  

ICcomplex C = empty 
for q from 0 to the dimension of A { 
 for s from 0to the dimension of B { 
while (there exist non-updated q-dimensional cells of A){ 

find cell q
ia that does not contain non-updated cells of A 

   while (there exist non-updated s- dimensional cells of B) { 

find cell r
jb that does not contain non-updated cells of B 

      ICcomplex L = empty 

     Mesh M = cells_intersection( q
ia , r

jb ) 

 analyse connected_components of M 
 aggregate cells of M 
 convert aggregated cells of M into C- cells of L 
 establish relations between L and A,  L and B 
 C = IC_adding (C, L) 

 mark cells q
ia  and r

jb  as updated 

}}}}  

As a result of this procedure we get the required IC BAC ∩=  along with the rela-
tions between C and the initial complexes A and B. Based on our construction, one 
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can claim that the final IC C is properly joined to both complexes A and B. The rela-
tions between C and, A and B allow us to establish attributes on the IC C using attrib-
utes defined on the initial ICs A and B, and an appropriate attributes mixing function.  

As can be seen from the above procedure, we build the IC C iteratively. The pair-
wise intersections of the cells are considered in the order of increasing dimensionality. 
Among the cells of the same dimensionality we first analyze those which do not con-
tain other as yet unprocessed cells. Thus, at the moment of the actual evaluation of the 

intersection between q
ia  and r

jb , the complex C already contains the cells describ-

ing the intersections of the boundaries of q
ia  and r

jb , as well as the intersection 

q
ia  with all the cells lying inside the cell r

jb  along with the intersections of r
jb  

with all the cells lying inside the cell q
ia . This allows for constructing the intersec-

tion of q
ia  with r

jb in the form of a set of properly joined cells of the IC C.   

As to the actual algorithm of the intersection of q
ia and r

jb , its choice depends of 

the cell types. The most general method is based on the cells discretization. Depend-
ing on the IC definition appropriate algorithms are available for IC cells of any type.  

In the general case we first perform the discretization of the initial cells q
ia and 

r
jb  compatible to all the cells of IC C lying either inside q

ia or r
jb  or on their 

boundaries (the list of such cells is provided by the relations between the ICs A, B 

and C). Thus we convert the cells q
ia and r

jb  into the simplicial complexes properly 

joined with the IC C. Then we evaluate the non-regularized set-theoretic intersection 
between these simplicial complexes. To do this, one can apply methods similar to 
those developed for geometric complexes [32].  

However, sometimes one can apply a more effective approach to evaluating the in-

tersection of cells depending on the particular cell types. For instance, if the cell r
jb  is 

a 3D F-cell then it is enough to discretize only the cell q
ia and to apply a procedure for 

trimming with an FRep solid. Moreover, 3D mesh generation is not required if we 
evaluate the intersection of two 3D cells represented by their boundaries.  

In any case, after the evaluation of the cell intersection we get a simplicial complex 

representing the point set |||| jr
j

iq
i ba ∩ . Then we analyze the topology of this com-

plex and separate connected dimensionally-homogeneous components of the com-
plex.  After that, we aggregate the simplexes of each component of the resulting com-
plex into subcomplexes using the following rules: any two n-dimensional cells can be 
merged only if they have a common boundary, the same co-boundary cells and if they 
are shared by the same cells in the initial ICs. As a result we convert the simplicial 
complex M into the IC L consisting of aggregated C-cells corresponding to the sub-
complexes of M.  

In all the previously described operations we maintain information about the rela-
tionships between complexes A, B and C. So, for each aggregated C-cell it is known 
what were its initial cells in the implicit complexes A and B. Preserving such informa-
tion allows us to build a constructive or functional description of the aggregated cells 
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depending on the types of the initial cells whose intersection these aggregated cells 
represent. If both of the initial cells are of the F-type, then the resulting cell is of the 
F-type too, otherwise it is of the T-type.  Note that the polygonal representations of 

the cells q
ia  and r

jb  as well as the cells of the IC C can be preserved for a subsequent 

usage.  Finally, we connect new cells of the IC C with the initial cells q
ia  and r

jb  by 

adding the corresponding pairs to the containment relations between the ICs A and C, 
and to the containment relations between the ICs B and C. Then all the cells of IC A 

containing the cell q
ia  are also linked with the new cells of the IC C by the contain-

ment relation between the ICs A and C. The same operations are performed on cells of 
the ICs B and C. 

To illustrate the described algorithm, let us consider the intersection of two 2D ob-
jects shown in Fig. 8. The fist object is represented by the IC A consisting of one 2D 

cell 2
polygona and one 1D cell 1

polylinea , which is the boundary of 2
polygona . The sec-

ond object is a rectangle represented by the IC B consisting of one 2D cell 2
rectb and 

one 1D cell 1
frameb , which is the boundary of 2

rectb . Initially we evaluate the inter-

section of the cells 1
polylinea  and 1

frameb , 1
polylinea and  2

rectb , and 1
frameb  and 

2
polygona . As a result we get the IC C containing nine 0D cells representing points M, 

N, C, D, E, F, G, H, K, and the 1D cells describing the segments EF, MH, NK, HK, 

MN, CD, and the polyline CLD. An analysis of the intersection of 2
polygona  and  

 

M N C D E F G

H K

L

A

B

 

Fig. 8. The intersection of two 2D ICs (the IC A describes a grey polygon and the IC B represents a 
white rectangle). The bounding boxes of the components are shown in dashed lines. 

2
rectb  allows us to find four connected components: the rectangles MNKH and CLD,  

the segment EF, and the point G. The segment EF and the point G as well as the 
boundary elements of the 2D components had already been found at the previous 
stage; so we only have to add two 2D cells to the IC C. Let us denote these 2D cells as 

2
MNKHc  and 2

CLDc .  

To build an unambiguous constructive description of the new cells, one needs to 
separate the corresponding components from each other. This can be done using, for 
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instance, the bounding boxes as shown by the dashed lines in Fig. 9. Then we get the 
following description of the cells: 

|)(_||||||| 222 MNKHboxboundingbac rectpolygonMNKH ∩∩=

|)(_||||||| 222 CLDboxboundingbac rectpolygonCLD ∩∩= . If the bounding boxes of dif-

ferent components intersect, then we build the bounding polyhedrons using hierarchic 
multiresolutional grids, as shown in Fig. 9.  

 

 

Fig. 9. Creating bounding polyhedrons for two objects 

Let us consider the example in Fig. 10 showing an intersection of objects repre-
sented by ICs containing overlapping cells. Object A is represented by an IC consist-

ing of one 2D cell  2
recta  and one 1D cell 1

framea . Here  1
framea  is the boundary cell 

of  2
recta . Object B includes two 2D cells  2

triangb  and 2
diskb  and two 1D cells  

1
polylineb  , 1

circleb .  Pairs of cells  ( 2
triangb , 1

polylineb  ) and  ( 2
diskb ,  1

circleb  ) belong to  

the boundary relation of the IC B.  Pairs  ),( 22
disktriang bb , ),( 12

circletriang bb  belong to the 

containment relations defined on the IC B.  
The procedure for evaluating the intersection between the objects A and B includes 

the following steps. 

1. The intersection of cells 1
framea and 1

circleb . The resulting IC C consists of 

0D cells 0
Mc and  0

Nc . The containment relations between the ICs A and C links the 

cell 1
framea  with the cells 0

Mc and 0
Nc . The containment relations between the ICs B 

and C links the cells 1
circleb , 1

polylineb and 2
triangb  with the cells 0

Mc and 0
Nc . 

2. The intersection of cells 1
framea and 1

polylineb . New 0D cells 0
Sc and 0

Tc  are 

added to the resulting IC C. The pairs ),( 01
Sframe ca  and ),( 01

Tframe ca  belong to the con-

tainment relation between the ICs A and C. The pairs ),( 01
Spolyline cb  and ),( 01

Tpolyline cb  

belong to the containment relation between the ICs B and C.  

3. The intersection of cells 1
framea and 2

diskb . Using the containment relations 

connecting the IC C with the initial ICs we get the cells 0
Mc and 0

Nc  belonging to the 
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point set |||| 21
diskframe ba ∩ . Then we subdivide the cells 1

framea and 2
diskb  compatible 

with points M and N. This means that the points M, N coincide with the nodes of 

meshes representing the cells 1
framea and 2

diskb . After evaluating the intersection we 

get the cell 1
_ MNanglec  whose boundary is formed by the cells 0

Mc and 0
Nc . The cell 

1
_ MNanglec  is connected with the initial cells 1

framea and 2
diskb  , and the cell 

2
triangb by means of the containment relations. 

4. The intersection of cells 1
framea and  2

triangb . The containment relations be-

tween the ICs A, B and C allow us to get the cells of the IC C belonging to the point 

set  |||| 21
triangframe ba ∩ . So we subdivide the cells 1

framea and 2
triangb  taking into ac-

count the already created cells 0
Mc , 0

Nc , 0
Sc , 0

Tc and 1
_ MNanglec . As a result we 

form a new cell 1
SMNTc . According to the construction procedure the cells 0

Sc and 
0
Tc  are the boundary cells of 1

SMNTc . These cells are linked by the boundary relation 

defined on the IC C. The remaining cells 0
Mc , 0

Nc  and  1
_ MNanglec are initially ex-

tracted as belonging to the point set |||| 21
triangframe ba ∩  and are marked as contained 

in the cell 1
SMNTc . So we add the corresponding pairs to the containment relations 

defined on the IC C. The cell  1
SMNTc  is also linked with the cells 1

framea and  2
triangb  

by means of the containment relations between the ICs A, B and C.  

5. The ntersection of cells 2
recta and 1

circleb . We add a new cell 1
_ MNarcc  to 

the IC C and connect it with the cells 2
recta , 1

circleb , and 2
triangb  by the containment 

relations.   

6. The intersection of cells 2
recta and 1

polylineb . We add a new cell 1
STc  to the 

IC C and connect it with the initial cells by the containment relations. 

7. The intersection of cells 2
recta and 2

diskb . Using the containment relations 
we get the cells of the IC C lying on the boundary of the initial cells. Evaluation of the 

cells intersection produces the cell 2
_sec MNtc  contained in the initial cells and in the 

cell 2
triangb . 

8. The intersection of cells 2
recta and 2

triangb . We know that the cells of IC C 

form the boundary of the point set |||| 22
triangrect ba ∩ . As a result of the boundary 

evaluation, we add the cell 2
SMNTc  to the IC C. Using the containment relations be-

tween the ICs A, B and C we find that the point set |||| 22
triangrect ba ∩  also contains the 

cell 2
_sec MNtc . So we add the pair ( 2

SMNTc , 2
_sec MNtc ) to the containment relation 
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defined on the IC C. Then we link the cell 2
SMNTc  with the cells 2

recta and 2
triangb  by 

means of the containment relations between the ICs A, B and C. 

T

B

A

S M

N

 

Fig. 10. The intersection of two 2D ICs. The IC A describes a transparent rectangle and the IC 
B represents an object consisting of two components which are a grey triangle and a dark grey 
disk. 

6.2   The Trimming Operation 

Let us construct the implicit complex C that represents the result of the trimming op-
eration applied to the ICs A and B, BAC −= . This operation is valid only if the IC B 
represents an nD manifold, where n is the dimensionality of the modelling space de-
noted here by Ω . The corresponding algorithm is implemented as the procedure 
IC_trimming.  

We construct the complex C through intersection operations as follows. First, we 
evaluate the boundary of the IC B, invert the orientation of its cell and get the IC 
which describes the boundary representation of a cavity in the universal set. We de-
note this IC by D. According to our construction, D is properly joined to B. We also 
form the relations between D and B. They are created during the boundary evaluation 
process. After that, we calculate the required IC C as the intersection between A and 
D. According to our intersection algorithm, C is properly joined to A and D; therefore 
it is properly joined to B. The relations between C and B are established as the composi-
tion of the corresponding relations between C and D, and D and B. The resulting IC C 
inherits attributes from the IC A. The trimming operation is illustrated by Fig. 11. 

 

 
Fig. 11. The trimming object represented by the IC A (white rectangle) by the object repre-
sented by the IC B (gray disk)  

6.3   The Union Operation 

Let us construct an implicit complex C that represents the union of A and B, 
BAC ∪= . We propose two procedures for the implementation of the union  

=
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operation: IC_union and IC_subtractive_union.  Each of these takes two input ICs and 
returns an IC representing the union of the carriers of the initial IC. Let us consider 
these two procedures in more detail. 

1. The procedure IC_union. The required IC C is calculated as the sum of two prop-
erly joined ICs, BTAC ++= )( , where T is an IC describing the intersection be-

tween the initial ICs, BAT ∩= . Thus, the resulting IC C involves all the cells of 
the input ICs A and B and additional cells representing their intersection. For the 
example shown in Fig. 12 the resulting IC C returned by the procedure IC_union  
contains 2D cells: the triangle CED, the disk IGHF and the half-disk FHG; 1D 
cells: the polyline CED, the circle  IGHF, the segment FG and the arc FHG, and 
0D cells: the points F and G. Let us show that the summation operation can be 
applied to the ICs TAM +=  and B. It follows from our IC intersection algo-
rithm that the IC T is properly joined to A and B. Then, the intersection of any 
cell from the IC TAM +=  with any cell from B belongs to the complex 

BAT ∩=  and consequently is contained in M. So the IC M is properly joined  
to B. 

 

Fig. 12. The union of the objects represented by the ICs A (white rectangle) and B (dark gray 
disk)  

 
2. The procedure IC_subtractive_union. The required IC C is calculated as 

)( ABAC −+= . Thus, the resulting IC C does not include those points of the IC 
B which lie inside the carrier of A. According to our trimming algorithm, IC 

ABL −=  is properly joined to the IC A; so we can apply the sum operation to 
the ICs L and A. This implementation of the union operation is available only if 
the IC A represents a 3D manifold. The bottom right part of Fig. 12 illustrates this 
case.  

6.4   Establishing Attributes in Set-Theoretic Operations  

The attributes are associated with the resulting IC C through the relations between C 
and the initial complexes A and B. These relations are created, as already described, 
by the procedures implementing the set-theoretic operations.  

The attribute functions associated with the cells of C belonging to both ICs A and B 
are calculated as a blend of the initial attributes functions associated with the same 
cells on the ICs A and B. Other cells of C inherit attributes from their preimages in the 
initial complexes.  
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Let us consider the example in Fig 12. Here the attribute “color” is defined on the 
initial ICs A and B. Then in the resulting IC C produced by the IC_union operation 
(shown in the top right part of Fig. 12), the cells representing the rectangle and the 
disk preserve those attribute values that were defined on the initial ICs. The attribute 
 

                 
                                    a)                                                                          b) 
 

     
c) d) 

 
Fig. 13. The multicomponent mechanical assembly consisting of a gear, a shaft, and a two end-
round key: a) general view;  b) zoom to the shaft;  c)  and d) sections 
value of the cell describing the half-disk, generated as a result of the intersection of the 
initial cells, is calculated as a blend of the attribute values defined on the original cells.  

7   Case Studies 

In this section, we present case studies that allow us to show how to model some hetero-
geneous objects within the IC framework using the set-theoretic operations on ICs. We 
consider two examples. The first example concerns modelling mechanical assemblies and 
the second illustrates the construction of heterogeneous objects for animation. 
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7.1   The Modelling of Mechanical Assemblies 

This example illustrates how multicomponent mechanical assemblies are described 
using the IC framework. Fig. 13 shows an assembly consisting of three main parts: a 
gear, a shaft, and a two end-round key.  

The IC based model of the assembly is illustrated by Fig. 14. Let us consider the 

cells forming the IC representing this assembly. The 3D cells 3
1Pg , 3

2Pg  and 3
3Pg  de-

scribe the initial components: the gear, the shaft, and the two end-round key. Their 

surfaces are represented by the cells 2
1dPg , 2

2dPg  and 2
3dPg  respectively. The intersec-

tion area of the gear and the shaft is described by the 2D cell 2
1Zg , and the boundary 

contour of that area is described by the 1D cell 1
1Cg . Then, the cells 2

2Zg  and 1
2Cg  

describe the intersection area of the two end-round key and the shaft as well as its 
boundary curve. The contact zone of the gear and the two end-round key consists of 

two rectangles Z3 and Z4. These rectangles are represented by the cells 2
3Zg and 

2
4Zg , while their boundaries are described by the cells 1

3Cg and 1
4Cg . The boundaries 

of the intersection areas of the initial components intersect along the segments L1 and 
L2. The nodes T1, T2, T3 and T4 represent the ends of these segments. The segments 

and their end points are represented by the cells 1
1Lg , 1

2Lg , 0
1Tg , 0

2Tg , 0
3Tg  and 0

4Tg .  
The following boundary and containment relations describe the IC structure:  
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                                       a)                                                                    b)  

                    
                                      c)                                                                   d) 

                  
                                      e)                                                                    f)   

Fig. 14. The cells of the IC model of a mechanical assembly consisting of a gear (a, b), a shaft 
(c, d), and a two end-round key (e, f)  
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From the above example one can clearly see the advantages of the IC based ap-
proach. In particular, the model contains a description of all the components in their 
initial state (without sections) along with the contact zones described by the additional 
cells that are constructively defined with respect to the initial components. Such a 
description is very effective for the purpose of subsequent optimisation of the assem-
bly process. At the same time, the IC framework guarantees such a description of both 
geometry and topology that provides all the necessary data for the subsequent discre-
tisation, finite element analysis, and other numerical calculations on the assembly.  

7.2   Constructing a Hybrid Model Combining Brep and Frep Components 

Next we consider an example with very important practical applications. Namely a 
hybrid model unifying objects represented in a mixture of boundary and functional 
representations. Here we deal with two relatively simple initial objects (see Fig. 15); a 
Triceratops BRep model and a Mouse FRep model. We will show in a step-by-step 
manner how to construct a hybrid model representing the Triceratops with the head of 
the mouse. First we construct the ICs representing each of the initial objects. Then we 
build a unified model using set theoretic operations on ICs. 

 

 
 

Fig. 15. A BRep object Triceratops and an FRep object Mouse 

7.2.1   The Construction of the ICs Representing the Initial Objects  
We denote by T and M the ICs that describe the models of the Triceratops and the 
Mouse respectively. Initially the Triceratops is described by a surface mesh loaded 
from a file and the Mouse is described functionally in the form of the inequal-
ity 0),,( ≥zyxFM . We also associate material attributes with these models. We as-

sume that the material of the Triceratops is described by the functions, intricS _  (for 

internal points) and ontricS _  (for boundary points), and the material of the Mouse is 

specified by the function mouseS . 
We use the add_cell procedure to construct the initial ICs. The input data of this 

procedure includes cell type and dimension, its shape description, and the following: 
the lists of its boundary cells, the list of the IC cells containing the cells being added, 
and the list of the IC cells lying inside the cells being added. The add_cell procedure 
returns the ID of each added cell. Attributes are established using the procedures 
add_attribute, add_function and set_attribute. The procedure add_attribute takes the 
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name of the attribute being added and the dimension of its values space and returns 
the ID of the added attribute. The add_function adds the function to the IC attributes 
and returns its ID, and the set_attribute binds cells with attributes functions taking 
their IDs as input data. 

The following pseudocode describes the initial ICs construction: 
 
IC T=empty, M=empty; 
// Set up of the initial data 
MeshSurface Triceratops(filename); 
FrepSolid Mouse(FunM); 
FrepSurface MouseBnd(-(FunM*FunM), FunM); 
// Construction of the ICs 
Cell_ID tric, tric_surf, mouse_surf, mouse; 
tric_surf = T.add_cell(type = ‘Ccell’, dim = 2, shape = Triceratops, bnd_cells = 

empty, containing_cells = empty, cells_inside = empty); 
 
tric = T.add_cell(type = ‘Bcell’, dim = 3, shape = empty, bnd_cells = {tric_surf}, 

containing_cells = empty, cells_inside = empty); 
 
mouse_surf = M.add_cell(type = ‘Fcell’, dim = 2, shape = MouseBnd, bnd_cells = 

empty, containing_cells = empty, cells_inside = empty); 
 
mouse = M.add_cell(type = ‘Fcell’, dim = 3, shape = Mouse, bnd_cells = 

{mouse_surf}, containing_cells = empty, cells_inside = empty); 
 
// Setting of the attributes 
IC_Attribute T_mat, M_mat; 
Attribute_function_ID Stric_in, Stric_on, Smouse; 
 
T_mat = T.add_attribute(attribute_name = ‘material’, values_space_dim = 1); 
Stric_in = T_mat.add_function(MaterialTricInside); 
Stric_on = T_mat.add_function (MaterialTricSurf); 
T.set_attribute(cell = tric_surf, function = Stric_on); 
T.set_attribute(cell = tric, function = Stric_in); 
 
M_mat = M.add_attribute(attribute_name = ‘material’, values_space_dim = 1); 
Smouse = M_mat.adding_ function( MouseMaterial); 
M.set_attribute(cell = mouse_surf, function = Smouse); 
M.set_attribute(cell = mouse, function = Smouse); 
 
As a result of performing this procedure, we get the ICs T and M. The IC T consists 

of the 2D composite cell (C-cell) 2
_ surftrict  and the 3D boundary cell (B-cell) 3

trict . 

These cells are related by the boundary relation 32Rb . The cell 3
trict  is associated with 

the attribute function intricS _  and the material attribute is described on 2
_ surftrict  by 

the function ontricS _ .  
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The IC M includes the 2D functional cell (F-cell) 2
_ surfmousem  and the 3D F-cell 

3
tmousem . The shape of 2

_ surfmousem  is described by the pair of functions 

),)(( 2
MM FFF −=  and the shape of 3

tmousem  is described by the function MF . These 

cells are related by the boundary relation 32Rb . Both cells of the IC M are associated 
with the attribute function mouseS . 

The containment relations of the ICs T and M are empty. 

7.2.2   The Construction of the Headless Triceratops  
We create an IC A representing a Triceratops without a head as the result of the inter-
section between the IC T and the additional IC D describing a spherical cavity in the 
modelling space, DTA ∩=  (see Fig. 16). The cavity is represented functionally. The 
construction process of the IC A is described by the following pseudocode: 

IC D = empty, A = empty; 
FrepSolid Cavity(-FunSphere); 
FrepSurface Sphere(-(FunSphere * FunSphere), FunSphere); 
Cell_ID cavity, cavity_surf; 
cavity_surf = D.add_cell(type = ‘Fcell’, dim = 2, shape = Sphere, bnd_cells = 

empty, containing_cells = empty, cells_inside = empty); 
cavity = M.add_cell(type = ‘Fcell’, dim = 3, shape = Cavity, bnd_cells = {cav-

ity_surf}, containing_cells = empty, cells_inside = empty); 
A = IC_intersection(T,D); 

       
                             (a)                                                                              (b) 

Fig. 16. The intersection operation: (a) Input objects: ICs T and D; (b) The resulting IC A, cyan 
=S

tric_on
, yellow = S

tric_in
  

The IC A is generated automatically using the procedure IC_intersection. The 
complex A consists of the following constructive cells (T-cells): 

|||||| 22
_

1
_ spheresurftriclineneck dta ∩= ; 

|||||| 232
spheretricneck dta ∩= ; 

|||||| 32
_

2
_ cavitysurftricsurfbody dta ∩= ; 
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|||||| 333
cavitytricbody dta ∩=  

The cells of the IC A are related by the following boundary relations:  
32.RbA ={ ),( 2

_
3

surfbodybody aa , ),( 23
neckbody aa } 

21.RbA ={ ),( 1
_

2
_ linenecksurfbody aa , ),( 1

_
2

lineneckneck aa } 

The boundary relations 10.RbA  and all the containment relations of IC A are 
empty.  

The cells of A automatically inherit the material attribute functions from its pre-
images in IC T .  

7.2.3   Combining the Headless Triceratops with the Mouse  
We apply the subtractive union operation to the ICs M and A. As a result we calculate 
the IC )( AMAH −+= . This operation is possible because A describes a 3D mani-
fold. The IC H is generated automatically by the operation 

IC H = IC_subtractive_union(A,M) 
The complex H involves cells equivalent to all the cells of IC A: 

1
_

1
_ linenecklineneck ah = , 2

_
2

_ surfbodysurfbody ah = , 22
neckneck ah =  and 33

bodybody ah = .    

Additionally, the IC H includes the following constructive T-cells (see Fig. 17): 
1

_ linelefth  , 1
_ linerighth , 1

__ lineneckmh , 2
_ tracklefth  , 2

_ surflefth , 2
_ trackrighth , 2

_ surfrighth , 

2
_ neckmh , 2

_ surfheadh , 3
lefth  , 3

righth  and 3
headh .  

 

  

 
 

Fig. 17. Modelling of a Triceratops with a mouse head. (a) input IC models A and M ; (b) 2D 
and 1D cells of the IC  H = A∪M; (c) 3D cells of the IC H shown in different colors; (d) the 

resulting IC model after cutting cells 3
lefth  and 3

righth . 
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7.2.4   Cutting Unnecessary Cells from the Model 
We cut the unnecessary cells 3

lefth  and 3
righth  from H. One can identify these cells 

using, for example, the points selected on the boundary mesh of the Mouse’s legs. 
This is illustrated by the following pseudocode: 

Points3D P1, P2; // points on the Mouse’s legs 
Cell_ID left_cell, right_cell; 
left_cell = H.select_cell_by_point(dim = 3, point = P1); 
right_cell = H.select_cell_by_point(dim = 3, point = P2); 
H.cut_cell(left_cell); 
H.cut_cell(right_cell); 

Note that the cut_cell operation removes 3
lefth  and 3

righth together with their bound-

ary cells. After that the IC H represents the required model of a Triceratops with the 

mouse head. The final IC H contains the cells 1
_ lineneckh , 2

_ surfbodyh , 2
neckh , 

3
bodyh , 1

__ lineneckmh , 2
_ neckmh , 2

_ surfheadh and 3
headh . The first four cells are inherited 

from the IC A. The last four cells are described as follows:  

headcavitytricmousehead BPhdtmh ∩∩−= |))||(||(||| 3333

headcavitytricsurfmousesurfhead BPhdtmh ∩∩−= |))||(||(||| 332
_

2
_

headspheretricmouseneckm BPhdtmh ∩∩∩= |))||(||(||| 2332
_

headspheretricsurfmouselineneck BPhdtmh ∩∩∩= |))||(||(||| 232
_

1
_   

where headBPh  is the bounding polyhedron which separates the point set 3
headh  from 

the point sets 3
lefth  and 3

righth . 

The cells of the IC H are related by the following boundary relations:  
32.RbH ={ ),( 2

_
3

surfbodybody hh , ),( 23
neckbody hh , ),( 2

_
3

surfheadhead hh , ),( 2
_

3
neckmhead hh } 

21.RbH ={ ),( 1
_

2
_ linenecksurfbody hh , ),( 1

_
2

lineneckneck hh , 

),( 1
__

2
_ lineneckmsurfhead hh , ),( 1

__
2

_ lineneckmneckm hh }. 

and the following containment relations: 
22.RCH ={ ),( 2

_
2

neckmneck hh } 21.RCH ={ ),( 1
__

2
lineneckmneck hh }. 

Following the procedure introduced above the attributes are defined on the basis of 
relations between the complexes. Thus, the material attribute of complex H is de-
scribed by the functions },,{ __ intrickontricmouse SSSS = . The function mouseS  is associ-

ated with the cells 2
_ neckmh , 2

_ surfheadh and 3
headh . The function intricS _  is associated 

with the cells 2
neckh  and 3

bodyh , and the cells 1
_ lineneckh  and 2

_ surfbodyh  are related to the 

function ontricS _ . In Figs.17 and 18 we use shades of grey to represent different mate-

rial attributes. 
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7.2.5   Animation  
Finally, we show an example of IC based dynamic modelling. We use the resulting IC 
model H from above to create animation sequences describing a rotation of the 
model’s head. Fig. 18 shows four frames for four angles of the rotation, namely 30°, 

60°, 120°, and 330°. The head represented by the cell 3
headh  altogether with its bound-

ary cells 2
_ neckmh , 2

_ surfheadh  and 1
__ lineneckmh  is rotated around the axis passing 

through the centroid of the cell 2
neckh  in the direction of the normal vector to the sur-

face of 2
neckh . Other cells of the IC H remain stationary. The IC’s topology described 

by the relations does not change because the contact zone between the body and the 

head is represented by the cells 2
neckh , 2

_ neckmh , 1
_ lineneckh  and 1

__ lineneckmh  whose 

mutual orientation is preserved during rotation. 
 

 
                        (a)                                                              (b)  

 
                            (c)                                                         (d) 
 

Fig. 18. Rotation of the head (clockwise): (a) angle = 30°; (b) angle = 60°; (c) angle = 120°; (d) 
angle = 330° 

8   Conclusion 

Implicit complexes provide a novel framework that makes it possible to model het-
erogeneous objects exploiting hybrid representation schemes. In this paper we ex-
tended the theoretical framework of ICs and introduced a number of new types of 
cells. We have also described the algorithms for the operations of intersection, union 
and trimming by 3D manifolds. This allowed us to develop a general step-by-step 
procedure for the construction of hybrid models. As a case-study, we presented an IC-
based model for a multicomponent mechanical assembly. We have also implemented 
an important particular case involving the integration of BRep and FRep components 
into a unified hybrid model. We have shown how non-geometric attributes can be 
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modeled within the same framework. Finally, we have generated an animation se-
quence using of time-dependent IC-based hybrid model.  

The main advantages of this way of modelling complex assemblies include the 
preservation of the original representations of all the components (however different 
they may be) and the ability to guarantee topologically correct definitions for all parts 
and relations of the hybrid model (in particular for problematic regions lying on the 
boundaries). This approach also allows us to handle conformity between the object’s 
geometry and its attributes representing non-geometric properties that are crucial for 
heterogeneous modelling.  

At first sight, our approach, relying on non-trivial topological concepts may appear 
as too abstract and overcomplex to the end user of modelling software. As we have 
shown in the case studies, this inherent complexity of the method is eventually hidden 
from the user by the provision of a set of library routines. Thus, the end user is bliss-
fully unaware of the underlying complexity and only deals with conceptually simple 
high-level features of the model whose internal structure is generated automatically 
and is made transparent through a number of high-level queries.  

Future work directions include the development of specific operations applicable to 
entire implicit complexes, an extension of the model to time-dependent implicit com-
plexes; further development of the multidimensional version of the model and its ap-
plications, and the implementation of a specialized modelling and animation language 
which uses this novel modelling technique. 
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Abstract. CAD modeling, analysis of properties and fabrication of heterogeneous 
objects have been extensively studied in the past few decades. Conventionally these 
topics are separately investigated in CAD, CAE and CAM communities. Such ex-
plicit separations, however, suffer from some apparent limitations. This article pre-
sents an alternative scheme to consider the heterogeneous object design problem in 
an integrated CAX (CAD/CAE/CAM) framework. The motivation is to design 
heterogeneous objects which not only look right, but also functionally work right. In 
addition to the data representation, model constructions and visualizations, other 
considerations such as data communications to and from CAE/CAM modules, fab-
rication efficiency in layered manufacturing etc., are also considered. The presented 
CAX based design method facilitates design tools integration and enhances the in-
teroperability in the entire design process. 

1   Introduction 

Tremendous research efforts have been made in modeling objects with designed material 
heterogeneities. Throughout the whole design process, the following questions are fre-
quently raised by the end users: (1) How to represent the heterogeneous objects’ ge-
ometries and material distributions? (2) Does the designed object fulfill the users’ func-
tional requirements? How to validate its functional properties? and (3) Is it physically 
realizable? How to make it? Conventionally these topics are separately investigated in 
CAD, CAE and CAM communities; however, such explicit separations suffer from some 
apparent limitations. CAD modelers are usually unable to ascertain whether the modeled 
objects can really meet the end users’ functional requirements, as they only concentrate 
on the data representations, model constructions and object visualizations. CAE engi-
neers focus on using analytical and numerical approaches to simulate the behaviors of the 
objects, however, due to the lack of powerful CAD models, only objects with simple (e.g. 
unidirectionally graded [1]) material distributions were vigorously studied [2-6]. Separate 
studies in CAD and CAM of heterogeneous object also impede the interoperability re-
quired at the process planning and fabrication stages: the data structures of the CAD 
models were seldom fully utilized to improve the manufacturing efficiency and product 
qualities, only direct one to one data conversions are conducted, resulting in degraded 
fabrication performances or productivities.  

Traditional design approaches emphasized the modularity and maintainability of 
heterogeneous object design; however they failed to answer all the questions the end 
users are concerned with. From a practical point of view, the answers to all of these 
questions are indispensable to assure the design qualities and failures in either one may 



 Heterogeneous Object Design: An Integrated CAX Perspective 43 

undermine the design feasibility and authenticity. This article is motivated to address 
the heterogeneous object design from an integrated collaborative perspective. In addi-
tion to the modular design methodologies, we emphasize the data communications and 
effective use of CAD models in the downstream CAE and CAM modules.  

The subsequent sections of this article are organized as follows. CAD modeling of 
heterogeneous objects is first described in Section 2, where the key concept and usage 
of our extended Heterogeneous Feature Tree (eHFT) structure are presented. Based on 
the eHFT model, the Finite Element Analysis (FEA) and Rapid Prototyping (RP) of 
heterogeneous objects are discussed in Section 3 and Section 4. Section 5 describes the 
implementation details of the integrated CAX approach and finally concluding remarks 
and discussion are offered in Section 6. 

2   CAD Modeling of Heterogeneous Object 

CAD modeling of heterogeneous objects received considerable research focus in the 
past and there have been a variety of models in the literature. Among them, the voxel 
model [7, 8], volume mesh model [9], implicit function model [10, 11], explicit func-
tion model [3, 4], control point based model [12, 13], control feature based 
model[14-18], assembly model[19, 20], cellular model[21, 22] and composite hybrid 
model [23, 24] are most widely used [25]. In this article, we utilize the Heterogeneous 
Feature Tree (HFT) structure and a Heterogeneous Cellular Representation (HC-Rep), 
which fall in the scope of the control feature based model and the cellular model, to 
present our integrated CAX perspective on heterogeneous object design. 

2.1   The Heterogeneous Feature Tree (HFT) Representation 

Heterogeneous objects are generally characterized as having location dependent ma-
terial compositions [17]. The idea of the HFT representation is to represent the material  
 

 

Fig. 1. A heterogeneous object with bi-directional material gradations1 

                                                           
1 The figure was reprinted from Computer-Aided Design, 37(3), Kou, X.Y. and S.T. Tan, A hi-

erarchical representation for heterogeneous object modeling, pp. 307-319, Copyright (2005), 
with permission from Elsevier. 
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heterogeneities by encoding the material variation dependencies with a proper data 
structure. A tree structure is selected because of its hierarchical nature [18] and the 
capability of representing complex (e.g. 2D or 3D dependent) material heterogeneities. 

For instance, the heterogeneous object in Fig. 1, constructed sequentially as shown 
in Fig. 2, can be conceptually represented by a simplified heterogeneous feature tree 
structure as shown in Fig. 3. 

The Heterogeneous Feature Tree (HFT) structure maintains the material variation 
dependencies with different hierarchies [18, 26]. By definition, the material composi-
tion of a feature in a higher level is dependent on (or determined by) its child features’  
 

(a) 

CA 

CB 

 

CArc4D* pCA=new CArc4D (CenterA, Ra, CMat (1,0,0) ); 
CArc4D* pCB=new CArc4D (CenterB, Rb, CMat (0,1,0) ); 
pCA ->Construct (…) ;  
pCA ->UpdateDisplay(…); 
pCB ->Construct (…) ; 
pCB ->UpdateDisplay(…); 

(b) 

 

CRegion4D *pRegion=new CRegion4D( ); 
pRegion->CoverEdge2Region (pCA, pCB);  
pRegion->AddChild(pCA); 
pRegion->AddChild(pCB); 
pRegion ->Construct (…) ; 
pRegion ->UpdateDisplay(…); 

(c) 
 

 

CA 

CB 

  

  

  

P2 

P3 

LB 

P4 

P1 

LA CLine4D *pLA=new CLine4D(P1, P2); 
CLine4D *pLB=new CLine4D(P3, P4); 
CExtruded4D* pExtrude4D= new CExtruded4D( ); 
pExtrude4D-> SetSeedRegion(pRegion); 
pExtrude4D->AddExtrusionVector(pLA); 
pExtrude4D-> AddExtrusionVector(pLB); 
pExtrude4D-> Construct (…) ; 
pExtrude4D-> UpdateDisplay(…); 

Fig. 2. The modeling process and the pseudo code for the heterogeneous object construction. The 
bold italic function calls are subroutines used for the construction of the heterogeneous feature 
tree structures, reprinted from [18] with permission from Elsevier2. 

                                                           
2 The figure was reprinted from Computer-Aided Design, 37(3), Kou, X.Y. and S.T. Tan, A hi-

erarchical representation for heterogeneous object modeling, pp. 307-319, Copyright (2005), 
with permission from Elsevier. 
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p1D-CA pHFT S, F(d -1) p1D-CB pHFT S, F(d -1)

p1D-LA pHFT S, F(d -1) p1D-LB pHFT S, F(d -1)

p0D-P1 p0D-P2 p0D-P3 p0D-P4

p3D_Cyl
3D Cylinder 
geometry pointer

p2D-Dsk
2D Disk 
geometry pointer

p1D-Cx
1D Circle 
geometry pointer

p1D-Lx
1D Line 
geometry pointer

S, F(d -1)
Serial_dependency, inverse 
distance weighting function

p0D-Px
0D Point 
geometry pointer

pHFT
Heterogeneous 
feature tree pointer

Homogeneous 
material

p3D-Cyl pHFT S, F(d -1)

p2D-Dsk pHFT S, F(d -1)

 

Fig. 3. A simplified HFT representation for the object in Fig. 1. Colors are used to represent 
different materials 
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Fig. 4. The Heterogeneous Feature Tree (HFT) structure, reprinted from [18] with permission 
from Elsevier3 

geometries and material definitions. The material compositions evaluated from each 
child tree are interpolated/blended at their parent level, and are used to represent the 
parent feature’s material distributions [26].  

For an arbitrary point P inside this heterogeneous cylinder, its material is dependent 
on the base 2D region’s material composition (since the object is directly extruded from 
the 2D region, see Fig. 2 (c)). Each section perpendicular to the extrusion vector is a 
                                                           
3 The figure was reprinted from Computer-Aided Design, 37(3), Kou, X.Y. and S.T. Tan, A hi-

erarchical representation for heterogeneous object modeling, pp. 307-319, Copyright (2005), 
with permission from Elsevier. 
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heterogeneous 2D region, which is similar to the base 2D region in both geometry and 
material distributions. For each section, the material composition is determined by two 
bounding contours, (Fig. 2 (a)). Along the extrusion directions, these contours’ material 
variations are constrained (regulated) by the other two heterogeneous vectors (LA and 
LB, Fig. 2 (c)). The material distribution of these extrusion vectors, in turn, are de-
pendent on the composition of their bounding vertices (i.e. Pi, i=1, 2, 3, 4). 

It can be seen that the constructed HFT structure in Fig. 3 faithfully conveys such 
material variation dependencies as described above. Note that the HFT structure in  
Fig. 3 is only a graphic representation which qualitatively depicts the material variation 
dependencies across different hierarchies. The complete HFT structure also embraces 
other information such as blending functions between child-parent features and other 
enumeration data, as shown in Fig. 4. 

2.2   Extended Heterogeneous Feature Tree (eHFT) Structure and the 

        Heterogeneous Cellular Representation (HC-Rep) 

The HFT representation is initially proposed to model 2D or 3D dependent material 
gradations with hierarchical tree structures [18]. However, in real application, only few 
objects have such regular material gradations. It is commonplace that hybrid homo-
geneous, Functionally Graded Material (FGM) and other distributions coexist in dif-
ferent portions of a complex heterogeneous object. Fig. 5 demonstrates an example of 
such object. For such objects, the HFT representation is still inadequate. 
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Fig. 5. A heterogeneous object composed of multiple components 
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To remedy this, a natural idea is to introduce multiple HFT structures to model ob-
jects with complex heterogeneities. Using the part-assembly model to represent the 
object geometries and associating each part with a HFT structure seem to be an intuitive 
solution. However, the part-assembly model introduces serious data redundancies and 
inconsistency problems (as will be further elaborated in Section 4). For instance, the 
faces Fi' and Fi'' (i=1, 2, 3, 4) in Fig. 5 represent exactly the same geometries, however 
are repetitively kept in separate parts. From the visualization point of view, such data 
redundancies do not matter much, however, when the model undergoes further ma-
nipulations (for instance, local translation or deformations of Fi), inconsistent and 
self-intersected geometries may occur. This is because Fi' and Fi'' are separately 
translated or deformed and there is no guarantee that they will be exactly identical, 
especially when the computation error or other noise sources are also involved. 

Using multiple, independent HFT structures to represent the material distribution 
also suffer from similar problems. For instance, if one of the component’s material (e.g. 
Fig. 5 (j)) is changed to another material, its neighbor component’s material distribu-
tions will not change accordingly (Fig. 5 (k)), resulting in sharp material transitions and 
possibly, stress concentrations. 

Our solution to this problem is to use a novel Heterogeneous Cellular Representation 
(HC-Rep) to represent complex heterogeneous objects. A heterogeneous object is defined 
as a collection of heterogeneous cells, each of which, graphically, resembles the parts 
shown in Fig. 5 (c) to (k). However, the part-assembly model is substituted with the 
non-manifold cellular model and extended HFT structures [22] are utilized to model the 
material heterogeneities.  
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Fig. 6. The extended Heterogeneous Feature Tree structure (eHFT), reprinted from [22] with 
permission from Elsevier4 

                                                           
4 The figure was reprinted from Computer-Aided Design, 38(5), Kou, X.Y., S.T. Tan, and W.S. 

Sze, Modeling complex heterogeneous objects with non-manifold heterogeneous cells, pp. 
457-474, Copyright (2006), with permission from Elsevier. 
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The non-manifold cellular model uses both the oriented faces (single-sided) and the 
‘double-sided’ boundary faces (co-boundaries) in the computer model. As is shown in 
Fig. 5 (b), the faces Fi (i=1, 2, 3, 4) which delimit the complex object are modeled as 
co-faces and are shared between adjacent cells (rather than explicitly copied to each 
cell). This naturally solves the aforementioned data consistency problem because the 
applied transformations will be exerted on the shared entities. The computation error, if 
exists, has the same impact on both cells and there will be no contradictory geometries 
(e.g. self-intersections) in the modified computer model. 

Based on a similar entity-sharing mechanism, the extended HFT (eHFT) structure is 
proposed to model the local (cell level) as well as the overall (object level) material 
distributions. The eHFT is characterized as sharing part of the tree branches with other 
HFT structures. To enable this HFT sharing, the Proxy-HFT (PHFT) is proposed, as 
shown in Fig. 6. The PHFT points to an existing heterogeneous feature in the modeling 
space. The feature that is pointed to by the PHFT pointer is called a proxy, and the cell 
that uses the PHFT is called a client [22]. Based on this proxy-client mechanism, the 
material composition evaluation for a cell can be directly forwarded or delegated to its 
proxy features. If a client feature contains a valid proxy HFT pointer as shown in Fig. 6, 
the material composition for a point inside or on the client’s boundary is dynamically 
determined by calling the proxy feature’s material evaluation procedure. Otherwise if 
the proxy feature pointer is a NULL pointer, then it degenerates to the common HFT 
representation as previously discussed; and the material evaluation can be executed 
according to the encoded hierarchical dependencies. 

 

(a) 

 
F3

F4

F5  

(b) 

 

(c) 

 

(d) 

 

Fig. 7. The eHFT representation for the cell in Fig. 5 (k) 

Fig. 7 shows the eHFT representation for the cell in Fig. 5 (k), whose material dis-
tribution is defined as a gradation between the face (F5) and the two co-faces (F3 and 
F4), while the material distributions of F3 and F4 are not represented by the usual HFT 
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structures, instead, two proxies (Oi and Oj, see Fig. 5 and Fig. 7) are proposed to ‘share’ 
their material distributions with the clients (i.e. F3 and F4).  

The benefits of sharing the HFT branches are obvious: data redundancy is elimi-
nated; modifications on the material distributions are efficiently updated; and smooth 
material gradations can be guaranteed. For instance, when the proxy Oi’s or Oj’s (Fig. 5 
(i), (j)) material compositions are changed from “blue” to “green” (see Fig. 7 (c) and  
(d)), its neighbor Ok’s material (Fig. 5 (k)) can be immediately reflected due to the 
feature sharing mechanism. Note that this auto-update ability allows for local material 
editions to be properly propagated to the entire heterogeneous object, and this is crucial 
to avoid abrupt material transitions in FGM object modeling. 

3   Finite Element Analysis (FEA) of Heterogeneous Object 

The previous section focuses on CAD modeling of heterogeneous objects. Based on the 
CAD models, other specific modeling tools can be developed to facilitate users to de-
sign objects with the desired geometries and material distributions. Nevertheless, the 
word “desired” here mostly refers to visual appearances of the objects. A visually 
pleasing heterogeneous object may look right, however, there is no guarantee that it can 
functionally work right. To assure the designed object can properly work as required, 
finite element analysis and other numerical approaches can be conducted to evaluate its 
physical properties or performances. 

FEA of heterogeneous objects is a well investigated topic in CAE communities. 
However, most investigations focus on objects with simple material heterogeneities. 
For instance, FEA on unidirectionally graded objects account for the majority of case 
studies in existing literature [2-6]. The primary reason for this phenomenon is not be-
cause the finite element method is incapable of handling more complex objects, but 
possibly due to insufficient support in formulation/representation of complex material 
heterogeneities. Also note that contemporary CAD modelers (e.g. Solidworks, 
 

 

(a) (b) (c) 

Fig. 8. A steady state thermal conduction analysis. (a) The heterogeneous material distributions 
of the object under examination; (b) Boundary condition (I), highlighted surfaces are constrained 
at a temperature of 773.15K; (c) Boundary condition (II), highlighted surfaces are constrained at 
a temperature of 313.15K.  
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Pro-Engineer, Unigraphics NX etc.) have dramatically enhanced the communications 
between CAD and CAE modules; however, the material heterogeneities are not in-
cluded in the data exchanges and information flows.  

In what follows, we present an integrated approach to conduct the CAD modeling and 
FE analysis on the designed heterogeneous object. A heterogeneous object shown in Fig. 
8 (a) is used as an example to demonstrate the proposed scheme. The object is modeled 
with a Heterogeneous Cellular Representation (HC-Rep) as described earlier. The “red” 
and “blue” colors are defined to represent the material “Alumina” and “Aluminum” 
whose thermal conductivities (k) are 27 W/m/K and 155 W/m/K respectively. A steady 
state thermal conduction analysis is conducted, and the boundary conditions of the object 
are illustrated in Fig. 8 (b) and (c): the highlighted surfaces in Fig. 8 (b) and (c) are con-
strained at a temperature of 773.15K and 313.15K respectively.  

Fig. 9 outlines the integrated CAD modeling and FEA approach [26]. 
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Fig. 9. A flowchart of integrated CAD modeling and FEA of heterogeneous objects, reprinted 
from [27] with permission from Elsevier5 

 

1. The geometric model of the object is first converted into the Standard ACIS Text 
(SAT) format [28, 29] and then exported to a commercial FEA package COMSOL 
Multiphysics [30]; 

2. COMSOL interprets the geometric data and generates finite element meshes based 
on the object’s geometric information (pre-processing); 

3. The material compositions of the object sampled at some regular grids are interro-
gated from the heterogeneous CAD models, relevant material properties (in this 
example, the thermal conductivity) are then calculated;  

                                                           
5 The figure was reprinted from Materials & Design. In Press, Corrected Proof, Kou, X.Y. and 

S.T. Tan, A systematic approach for Integrated Computer-Aided Design and Finite Element 
Analysis of Functionally-Graded-Material objects, Copyright (2007), with permission from 
Elsevier. 
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4. The material properties at sampled points are saved in grid data files, following a 
prescribed format recognizable to COMSOL; 

5. COMSOL imports the grid data files and determine the material properties at FE 
nodes through interpolations (in this example linear interpolation is used); 

6. Boundary conditions are defined within COMSOL; 
7. COMSOL computes the local stiffness matrix, assembles global stiffness matrix and 

solves the nodal variables (temperatures); 
8. COMSOL performs post processing to generate graphical outputs. 

 

  
(a) (b) 

Fig. 10. Results of the steady state thermal conduction analysis. (a) Temperature distribution of 
an FGM object (gradation between Aluminum k=155 W/m/K and Alumina k=27 W/m/K); (b) 
Temperature distribution of a homogeneous object (Aluminum), unit in (K).  

Fig. 10 (a) shows the obtained temperature distribution of the heterogeneous object. 
As a comparison, the temperature of a homogeneous object (Aluminum, subject to the 
same boundary condition) is also provided in Fig. 10 (b). As can be seen the high 
temperature region of Fig. 10 (a) is smaller than that of Fig. 10 (b), this is because the 
heterogeneous object uses a less conductive primary material (Alumina) which helps to 
impede thermal conductions, as compared with the homogeneous object.  

For brevity, Fig. 10 only shows the thermal conduction results of the heterogeneous 
object, however other coupled analysis (for instance, the thermal stress, strained energy 
density etc.) can be also conducted using similar approaches. A multi-physics based 
finite element analysis on 2D heterogeneous objects have been reported in our recent 
paper [27] and interested readers may find more technical details there. 

The benefit of this integrated CAD modeling and FE analysis is that objects with 
complex heterogeneities can be easily analyzed with the finite element methods. 
Without proper CAD models, however, the complex material distributions can hardly 
be formulated or interrogated; further material property calculations and physical per-
formance simulations are therefore very difficult to be obtained.  

Using the integrated CAD modeling and FEA of heterogeneous object, the users can 
first design heterogeneous CAD models and then transfer the models to the CAE 
modules for property simulations. Modifications on the object geometries or material 
distributions can be carried out if the simulated properties do not satisfy the functional 
requirements. The modified CAD models can be further delivered to CAE modules to 
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re-validate its efficacies. The above process can be repeated until the users’ functional 
requirements are fulfilled. 

4   Rapid Prototyping of Heterogeneous Object 

Once the designed heterogeneous object has been validated via numerical simulations, 
prototypes of the object can be then fabricated to test its physical behaviors under 
working conditions. In this section, Rapid Prototyping (RP) of heterogeneous objects is 
discussed and the manufacturing efficiency of objects with complex material hetero-
geneities is addressed. 

4.1   Fundamental Algorithms 

Typical processes involved in rapid prototyping of a heterogeneous object includes the 
following procedures [31]:  

1. The object geometry is first sliced by parallel planes and a collection of boundary 
profiles are obtained, as shown in Fig. 11 (a) and (b);  

2. For each slice, the silhouette boundary curves are covered into 2D regions, see  
Fig. 11 (c); 

  
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 11. Rapid prototyping of an example unidirectional FGM object 
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3. Each 2D region is intersected with scan lines and a collection of 1D solids is  
obtained;  

4. Each scan line is further decomposed into an array of voxels; 
5. For each voxel, its material composition is interrogated from the heterogeneous 

CAD model, as shown in Fig. 11 (d) and (e);  
6. The obtained voxel data are used to drive the hardware setup (e.g. nozzles) to se-

lectively deposit materials in a continuous point-wise, line-wise and slice-wise 
fashion until the object is completely fabricated, as shown in Fig. 11 (f). 

4.2   RP Data Generation for Complex Heterogeneous Object 

The aforementioned approach works well with objects with simple material distribu-
tions (for instance the unidirectional FGM object in Fig. 11), however if the objects 
under fabrication have complex material heterogeneities (e.g. the one shown in Fig. 5 
(a)), simply applying the above discussed algorithms may introduce additional prob-
lems. As mentioned in Section 4.2, the part-assembly model is a widely used repre-
sentation for objects with complex material heterogeneities; however, if the presented 
procedures in Section 4.1 are used in conjunction with the assembly model, significant 
robustness and efficiency problems may occur [31]. 
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Fig. 12. Planar slicing of a part-assembly model in rapid prototyping of a complex heterogeneous 
object (a) Subdivided components of the object and redundant faces; (b) Redundant edges gen-
erated by repetitive planar slicing  
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Take the object in Fig. 5 (a) as an example. In the planar slicing stage, to get the 
boundary profile of the object, the slicing algorithm must be separately applied on all 
the nine components, as shown in Fig. 12. Note that many faces are repetitively kept in 
the assembly, for instance FA', FA'', FB', FB'' and FC', FC'' in Fig. 12 (a). All these re-
dundant faces subsequently take part in the boundary slicing process, repetitive 
plane-face intersections are performed and redundant edges (e.g. EA', EA'', EB', EB'' and 
EC', EC'' in Fig. 12 (b)) are generated. Similarly in the line scanning process, identical 
line-edge intersections will be conducted on these redundant edges. Also note that these 
repetitive plane-face and line-edge intersection computations are ubiquitous in the en-
tire RP data generation process and they are performed in every planar slicing and line 
scanning step. These repetitive and unnecessary boundary intersections therefore, 
greatly degraded the overall efficiencies.  

A careful study into this problem shows that in most cases, these redundant entities 
(faces and edges) serve as the delimiting boundaries of some “sub-domains” [31], and 
each of such sub-domain has different material distributions [31]. They are introduced 
solely for the purpose of point membership classifications and material interrogations 
[22, 31, 32]. Conceptually, such material delimitation entities should not be included in 
the geometric operations (such as section slicing and line scanning); but rather, they 
should be utilized only in the material evaluation process (the Step 5 in Section 0). 

To improve the computational efficiency in the RP data generation, these repeti-
tively kept entities should be temporarily excluded from the boundary intersection 
computations; and only the boundary elements which bound the object geometries 
should actually participate in the plane-face, line-edge intersections.  

 

 
 

(a) (b) 

Fig. 13. Selective boundary slicing in rapid prototyping of a complex heterogeneous object 

With the traditional part-assembly model, the redundant entity removal is almost 
unattainable since all the boundary elements are equally treated. By using the proposed 
HC-Rep, however, the unnecessary and repetitive boundary-interaction calculations 
can be avoided and this is accomplished through a selective boundary slicing algorithm 
[31]. In this algorithm, all the boundary faces are first retrieved from the non-manifold 
cellular models and kept in a face list; the internal material delimitation boundaries, 
which share themselves with other boundary elements (i.e. double-sided, see also 
Section 0) are then removed from the list. The remaining faces are subsequently sewn 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 14. Planar slicing of the manifold geometry and the layered representation of the complex 
heterogeneous object. (a) and (b): results of applying the selected planar slicing on manifold 
geometry; (c) and (d): layered representations of the generated data to be used in the RP process. 
(e) and (f): Prototypes fabricated with 3D Printer [33].  

together to form a manifold solid, as shown in Fig. 13 (a). Note that it is the boundaries 
of the manifold solid that participate in the actual planar slicing and region covering, as 
shown in Fig. 13 (b). 

Fig. 14 shows the results of applying the selective planar slicing on the manifold 
geometries. The sliced 2D regions are then scanned line by line, and further decom-
posed into an array of voxels, as described earlier. Based on the presented eHFT 
structure, the material composition of each voxel is then interrogated from the HC-Rep 
model.  

The final layered representations of the generated data are shown in Fig. 14 (c) and 
(d), and the effects of different fabrication resolutions are demonstrated. Fig. 14 (e) and 
(f) show two prototypes fabricated using the Z Corporation’s 3D printer [33]; the ma-
terial distributions of both the outer boundary and internal parts are illustrated. 
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5   Implementations 

The proposed integrated CAX based design approach is partially implemented in our 
standalone heterogeneous object modeler — CAD4D [34], jointly with COMSOL 
Multiphysics [30].  

ACIS Kernal OpenGL

Lib4D

MFC Library

CAD4D

 

Fig. 15. Software implementation architecture of CAD4D 

CAD4D is based upon a reusable object class library Lib4D [26, 34] and Microsoft 
Foundation Class (MFC) libraries. The commercial 3D kernel ACIS [28] is used for 
handling geometric modeling related issues, C++ Standard Template Library (STL) is 
used to implement container related data structures, and OpenGL is used as the ren-
dering engine for object visualizations, as shown in Fig. 15. 

In a typical heterogeneous object design process, the users invoke the CAD mod-
eling tools through graphical user interfaces (e.g. clicking toolbar buttons or menu 
items). CAD4D performs modeling operations by manipulating relevant object data 
structures with proper algorithms. For instance, in object constructions, Lib4D object 
instances are created and appended to the object database (Fig. 16 (b1) and (c1)), 
visualizations are then updated in response of the user actions as shown in Fig. 16. Fig. 
17 shows a snapshot of the proposed CAD4D modeler. 

The integrated CAD modeling and finite element analysis are conducted using 
CAD4D and COMSOL Multiphysics, as detailed in Section 3.  
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Fig. 16. Typical user interactions and modeling processes using CAD4D modeler 
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Fig. 17. A Snapshot of the CAD4D modeler 

The integrated CAD and CAM of heterogeneous objects are carried out by data 
communications with CAD4D and Z Corporation’s 3D printer, mostly via the VRML 
data format. A heterogeneous CAD model is designed by CAD4D and validated/ 
verified by COMSOL Multiphysics; once the functional requirement of design is sat-
isfied, the HC-Rep based CAD models are then converted to VRML format for 
physical fabrications. 

6   Conclusions 

This article presents an integrated CAX (CAD/CAE/CAM) perspective on heteroge-
neous object design. Different from many existing approaches which emphasize a 
particular aspect of the design problem, heterogeneous object design is envisaged as an 
integral process which combines the CAD modeling, property analysis and physical 
realization. The article is motivated to present such a perspective, demonstrate the 
typical design procedures, paradigms and benefits. The emphasis of this article is on the 
linkage and integration of the CAX tools, rather than each separate topic. The readers 
may, however, refer to our previous papers [18, 22], [27] and [31] for more technical 
details on each subject of interest. Flash animations are also available on the first au-
thor’s website http://web.hku.hk/~kouxy. Interested readers may download them to get 
a rough idea of the relevant schemes before delving into the technical details. 
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Abstract. In this paper, we describe a hybrid modeling framework for
creating complex 3D objects incrementally. Our system relies on an ex-
tended CSG tree that assembles skeletal implicit primitives, triangle
meshes and point set models in a coherent fashion: we call this struc-
ture the HybridTree. Editing operations are performed by exploiting the
complementary abilities of implicit and polygonal mesh surface represen-
tations in a complete transparent way for the user. Implicit surfaces are
powerful for combining shapes with Boolean and blending operations,
while triangle meshes are well-suited for local deformations such as FFD
and fast visualization. Our system can handle point sampled geome-
try through a mesh surface reconstruction algorithm. The HybridTree
may be evaluated through four kinds of queries, depending on the im-
plicit or explicit formulation is required: field function and gradient at
a given point in space, point membership classification, and polygoniza-
tion. Every kind of query is achieved automatically in a specific and
optimized fashion for every node of the HybridTree.

1 Introduction

For the purpose of modeling complex free-form shapes, a large number of geo-
metric representation have been developed, each with specific properties and
limitations. For certain modeling operations, some surface representations are
thus more advantageous than others. Our goal is to overcome this kind of re-
striction by mixing multiple shape representations into a single coherent model-
ing framework that takes benefit from the complementary advantages of volume
and surface models. We focus here on three fundamental representations: implicit
surfaces, triangle meshes and point sets.

Implicit surfaces [1,2] are powerful for representing objects of complex geom-
etry and topology. As a volumetric model, They naturally lend themselves for
blending [3] and CSG Boolean operations, and can be deformed by space warp-
ing techniques [4]. Pasko et al. [5] and later Wyvill et al. [6] have proposed two
hierarchical models that incorporate Boolean, blending and warping operations
in a unified system. We have contributed to develop the BlobTree model [6] that
is characterized by a combination of skeletal primitives in a tree data-structure.

A. Pasko, V. Adzhiev, and P. Comninos (Eds.): HOMA, LNCS 4889, pp. 60–89, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The BlobTree has proved to be an intuitive and effective tool for modeling and
animating complex and realistic organic shapes [7]. However, in this framework
as in most implicit modeling frameworks, local deformations are difficult to im-
plement and are restrictive. Visualizing complex implicit surfaces is also a com-
putationally expensive task.

In contrast, triangle meshes can be efficiently visualized thanks to common
graphic hardware. These surfaces can be edited interactively by a variety of
powerful tools, such as free-form deformations [8] or Laplacian editing [9], that
provide very intuitive local control over geometry. However, combining surfaces
in boundary representation with Boolean operations is a complicated task, which
is prone to topological inconsistencies. Polygonal meshes also do not naturally
blend themselves together.

Point sampled geometry, that can be obtained from scanning devices, can
be efficiently visualized and edited through point-based implicit surface mod-
els, such as Moving Least Squares surfaces [10]. This kind of representation is
strongly dependent on the sampling density of the input point set and extrapolat-
ing reliable topological information can be a hard task. A connectivity structure
can be provided by a surface reconstruction process [11].

In this paper, we describe a hybrid shape representation mixing implicit and
polygonal mesh representations for incremental modeling of complex 3D shapes.
We review the ideas and results that were first introduced in [12,13], and pro-
vide additional comments and perspectives. Our model is characterized by a
tree data-structure that combines skeletal implicit surfaces, triangle meshes and
point set models by means of Boolean, blending and warping operations, in-
cluding free-form deformations. We call our model the HybridTree, which may
be seen as a generalization of the BlobTree [6]. We evaluate this structure on-
the-fly through three fundamental queries: field function, gradient and point
membership classification, and a polygonization process. The originality of our
model relies in the evaluation system that dynamically switches from one surface
model to the other so as to use the most suitable representation for every type
of editing operation. The core of our current implementation is a dual skele-
tal implicit/triangle mesh representation for every node. Each kind of node in
the HybridTree is evaluated automatically in a specific and optimized fashion,
depending on the formulation required by each operation. To handle point set
models, we rely on an intermediate mesh representation obtained through the
dynamic reconstruction technique proposed in [14,15,16], that can also be used
for local remeshing purposes.

The remainder of this paper is organized as follows. In Section 2, we provide
an overview of related shape modeling frameworks. Section 3 describes the ar-
chitecture of our system and present how implicit and mesh representations are
combined together. We explain in Section 4 how fundamental queries are per-
formed on the HybridTree, and detail our polygonization algorithms in Section 5.
Applications to complex shape modeling are discussed in Section 6. Eventually,
in Section 7, we conclude and present future work.
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2 Related Work

Modeling complex 3D shapes, either from scratch and/or from existing surfaces,
e.g. acquired with scanning devices, is an active research area in Geometric
Modeling and Computer Graphics. Conversion techniques from one model to
the other make it possible for objects in different representations to coexist and
interact in the same environment through a unified representation. Recent devel-
opments in implicit, mesh and point set modeling have lead to new interesting
solutions to tighten the gap between these representations. Combining volumet-
ric and boundary models into a single hybrid model has also received much
attention for geometry processing and shape modeling.

Conversion Techniques. Techniques to translate geometry from the implicit
to the polygonal mesh representation or from the polygonal mesh to the im-
plicit representation have been extensively studied, but still remain a challeng-
ing research field. In the Computer Graphics community, state-of-the-art implicit
surface meshing techniques include 3D-space cell decompositions [17,18,19,20],
particle systems [21], and surface marching methods [22,23]. Recent work in
Computational Geometry focused on how to produce a mesh approximation of
an implicit surface with guaranteed topology and geometry [24,25]. A polygonal
mesh surface can be converted into an implicit surface either through distance
field computation [26], or reconstruction methods [27,28]. Surface reconstruction
techniques from point sets may be used as well in this case, depending on the
sampling conditions [29,30,31,32,33]. There also exists wide literature on con-
verting point sets into polygonal mesh models, with Computational Geometry
techniques [11], and more local approaches [34,35,36].

Implicit Surface Editing. In recent work, discrete implicit representations
have been proposed as a general-purpose model for editing complex shapes.
The level set framework proposed by Museth et al. [37] provides conversion
algorithms from many other surface representations and a wide range of editing
tools. This model is memory consuming and the quality of the result is dependent
on the gid resolution. The Adaptively Sampled Distance Fields introduced by
Frisken et al. [38] rely on a hierarchical structure that provides local control
over geometric error. In constrast, the framework in this paper manipulates a
continuous implicit representation and preserves existing surfaces when possible.
As far as local deformations are concerned, Schmitt et al. [39] have proposed an
approach based on specific skeletal elements and field functions to simulate free-
form deformations on functionally-defined implicit surfaces. This method is not
as intuitive as mesh deformation tools and does not offer as many degrees of
freedom.

Mesh Surface Editing. Surface mesh editing has been recently enriched with
new techniques based on differential coordinates. The Laplacian representation
encodes the location of each vertex relatively to its neighborhood, which provides
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an approximation of the Laplacian of the underlying surface. Sorkine et al. [9]
developed local deformation and blending tools that preserve geometric details.
All operations require to solve least-squares systems, which can be achieved
at interactive rates for not too dense meshes. A similar approach based on the
discrete Poisson equation was introduced by Yu et al. [40]. In both methods, mesh
blending requires to solve a vertex matching problem between corresponding
mesh boundaries. The meshes that are blended together should have near equal
edge length, which may require an initial remeshing process.

Kanai et al. [41] have proposed a method for cutting and pasting mesh parts.
After selection of mesh parts of interest, matching boundary vertices are first
determined. A registration process is applied between the two boundaries and
a B-spline function is used to interpolate vertex locations smoothly. Using this
technique, Funkhouser et al. [42] developed a new kind of ”data-driven” mesh
modeling framework. Starting from a mesh model, the user can select parts
to edit thanks to an interactive segmentation algorithm, and then query a mesh
database for similar parts. The desired parts can be extracted from the retrieved
models and then merged with the base mesh.

Polygonal mesh blending is also closely related to shape interpolation and
morphing techniques [43]. A source polygonal mesh and a target one can be
locally interpolated so as to achieve local blending effects. Related work in this
domain include the work by Alexa [44], in which Laplacian coordinates are linarly
interpolated. Xu et al. [45] proceed by non-linear interpolation of gradient fields
by solving Poisson equations defined on meshes. This approach involves numer-
ous parameterization and remeshing issues [46,47]. The very limitation of mesh
blending based on morphing methods is that the source and target models should
have the same topology.

Hybrid Modeling. Depending on the surface representation, some operations
cannot be performed easily in a direct way. In some cases, this issue can be
addressed with the help of an intermediate representation. Over the past few
years, hybrid models have been investigated by several authors for this purpose.
In the field of geometry processing, some specific problems may be efficiently
solved by combining implicit and parametric representations [48]. For shape
modeling, this approach has first attracted attention for mesh deformation and
blending. Several implicit models have been used to deform meshes [49,50,51].
Decaudin [52] and Singh and Parent [53] introduced mesh blending techniques
based on an intermediate implicit representation. More recently, point-based
modeling techniques mixing point set and local implicit surface representations
have attracted considerable attention.

Point-Based Modeling. Due to the recent advances of 3D digital acquisi-
tion, shape modeling from point-sampled geometry has become very popular for
a few years. The Moving Least Squares implicit surface model introduced by
Levin [54] has proved abilities for both interactive surface editing [10] and phys-
ical simulation [55]. Its major interest is that it can handle digitally acquired
surfaces without preliminary surface reconstruction step. Explicit information
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about topology is not maintained, which has advantages for some operations.
Whenever neighborhood information is needed, connectivity relations based on
k-neighborhoods are computed on-the-fly using a spatial search data-structure.
However, establishing correct connectivity relations is not always a trivial prob-
lem, that depends on the sampling distribution of the points on the input sur-
faces [56,57]. Moreover, the sampling density has to be updated frequently to
maintain a coherent surface, which requires surface reconstruction steps.

The variational technique presented in [58] generates an implicit surface from
point-sets via an interpolation scheme based on compactly supported radial basis
functions. The resulting shapes can be locally controlled in an intuitive way by
acting on the constraint points. The evaluation may be performed at interactive
rates using an octree data-structure. However, this approach remains compu-
tationally demanding when manipulating dense point sampled geometry, and
sharp features are difficult to handle in this framework.

3 The HybridTree

The HybridTree model relies on a tree data-structure whose leaves can hold ei-
ther complex skeletal implicit primitives as described in [59], triangle meshes
with manifold topology or point set models. Those models are combined by
Boolean, blending and warping operations located at the nodes of the tree. Warp-
ing nodes include affine transformations, Barr deformations [60] and free-form
deformations [8]. Constructive operations are binary whereas warping operations
are unary operations.

Figure 1 shows the HybridTree structure of a winged snake-woman model. The
snake-woman model (a) has been entirely built from skeletal implicit primitives.
Using Boolean difference, only the body has been conserved, which has been
then blended with the Igea point set model (b) so as to obtain the result in (c).
The wings of a mesh model of the Victory of Samothrace (d) have been extracted
by intersecting the model with a box. The wings and the modified snake-woman
model have been finally blended together in (e).

The evaluation of the HybridTree is achieved in an incremental way by re-
cursively traversing the tree data-structure. The architecture of our evaluation
system is presented in Figure 2. Each pole corresponds to a geometric represen-
tation that provides the set of operations for which it is the most well-suited.
Arrows depict the gateways from one model to the other, that correspond to
conversion procedures. Starting from an implicit, mesh or point set object, it
is first converted on-the-fly into the required representation before applying a
given operation. The gateways available in our current implementation are de-
picted by solid arrows in the diagram. Skeletal implicit surfaces and triangle
meshes are currently the core of our system. Every node of the HybridTree can
generate both a potential field in space and a triangle mesh. Point sets models
are plugged through a surface reconstruction technique that produces a triangle
mesh representation. The completeness of the system is thus achieved by transi-
tivity. Conversion from the point set representation to the implicit one could be
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Fig. 1. The HybridTree structure of a winged snake-woman model

performed directly using Moving Least Squares or variational techniques. How-
ever, these techniques are not compatible with our skeletal implicit model, that
requires the signed distance function to the surface to be reliably evaluable every-
where in space. Depending on the sampling density, converting a triangle mesh
into a point set model may require a resampling process, as proposed in [24],
that is not currently included in our system. Conversion from a skeletal implicit
surface into a point set is achieved using ad hoc algorithms. We convert point
set models into triangle meshes using the dynamic convection-driven surface re-
construction technique developed by Allègre et al. in [14,15,16], that offers user
control over the level of detail of the resulting mesh.

Point sets

Fast
visualization

Free−form
Deformations

Point membership
classification

Skeletal implicit surfaces Triangle meshes
Blending

Fig. 2. The HybridTree’s evaluation system

The HybridTree is evaluated through three fundamental queries and a
polygonization process that are implemented in a specific fashion for each kind
of node. Field function queries at a given point in space are performed whenever
the implicit formulation is required. We essentially rely on the implicit formula-
tion to achieve blending operations. Gradient queries allow to obtain the exact
normal at sample points. Some operations only require to know whether a point
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lies inside or outside the surface, such as Boolean operations. Instead of eval-
uating the sign of the field function explicitely, we developed specific methods
to perform accelerated point membership queries. The last query type in our
framework is an incremental polygonization process that is invoked at a given
node if the mesh formulation is needed, for local deformations or visualization.
Local results are combined into a coherent fashion by binary operations.

Notations. An implicit surface is mathematically defined by a field function
f : R

3 → R as the points in space that satisfy the equation:

S = {p ∈ R
3|f(p) = T }

where T is a threshold level. The field function of a node A will be denoted as fA,
and the corresponding gradient as ∇fA. We will call cA(p) the point membership
function of A at point p, that can take three different values {1, 0, −1} depending
on p respectively lies inside, on, or outside the surface of A. The notation MA

will refer to the mesh of the surface of A, and the bounding box of the object A
will be denoted as BA.

4 Fundamental Queries

In the following paragraphs, we detail how the field function, gradient and point
membership are evaluated for the different kinds of node in the HybridTree.

4.1 Skeletal Implicit Primitives

Skeletal implicit primitives are built around a geometric object called skeleton.
The field function for a given skeleton is evaluated analytically using the follow-
ing formulation:

f(p) = g ◦ d(p)

where d : R
3 → R+ denotes the Euclidean distance to the skeleton, and g : R+ →

R refers to the potential field function. The latter is a compactly supported radial
basis function that is parameterized by a maximum field value I ∈ R reached
on the skeleton, and a radius of influence that will be denoted as R ∈ R+.
The associated region of influence, characterized by non-zero field values, will be
denoted as Ω. In our system, we use polynomial potential field functions of the
form:

g(r) =

⎧
⎨

⎩

I

(

1 − r2

R2

)n

, n ≥ 2 if r ∈ [0, R]

0 otherwise

The corresponding inverse potential field functions g−1 : R → R+ is defined
as follows:

g−1(t) =

⎧
⎪⎨

⎪⎩

R

√

1 −
(

t

I

) 1
n

, n ≥ 2 if 0 < t ≤ I or I ≤ t < 0

0 otherwise
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Normals can be obtained directly from the gradient of the field function ∇f(p)
which is evaluated as follows:

∇f(p) = g′ ◦ d(p)∇d(p)

Since d(p) is the Euclidean distance function, ∇d(p) is computed as the vector
between the orthogonal projection of p onto the skeleton and p.

The HybridTree implements a wide range of complex skeletal primitives in-
cluding curve, surface and volume skeletons as described by Barbier et al. in [59].
Figure 3 shows a bottle built using surface of revolution, spline, circle and hollow
cylinder skeletons. Every type of primitive implements a specific algorithm that
computes the distance d(p) to its skeleton analytically in an optimized fash-
ion. Algorithms become more sophisticated as the complexity of the skeletons
increases [61,62].

Union

Blend Blend

Blend

Fig. 3. A bottle model built using complex skeletal implicit primitives

For implicit surfaces, point membership classification is usually obtained
through an evaluation of the field function and comparing its value to the thresh-
old level. Since we manipulate skeletal implicit primitives, we do not need to
compute the full field function for point membership queries. The T level sur-
face of these primitives may indeed be defined by sweeping a sphere of constant
radius rT = g−1(T ) along the boundary of the skeleton. This isosurface exists if
and only if rT ≥ 0. Therefore, for a given point p in space, the point membership
function c(p) may be defined as follows:

c(p) =

⎧
⎨

⎩

−1 if 0 ≤ rT < d(p)
1 if 0 < d(p) < rT

0 otherwise

The radius rT is computed once for each primitive. For volume skeletal prim-
itives, the location of query points with respect to the interior of the skeleton is
obtained analytically as part of the computation of the distance d(p).

Skeletal implicit primitives are defined only by a few parameters, which yields
particularly low storage cost. Complex skeletons are also easier to control than
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a combination of simple primitives, but distance evaluations are more compu-
tationally demanding. A basic acceleration technique consists in pre-computing
and caching some results required for several evaluations, e.g. along a ray [59].
When the evaluation of f(p) and ∇f(p) are both required, common interme-
diate results are also computed only once. At global scale, every primitive is
equiped with a bounding box that allows to save useless evaluations.

4.2 Polygonal Meshes

For a polygonal mesh, the field function is computed using the same formulation
as for skeletal implicit primitives. The distance function dM from a point p ∈ R

3

to a triangle mesh M is defined as the minimal Euclidean distance between p
and any triangle T of the boundary of M:

dM(p) = min
T ∈M

d(p, T )

The implicit surface generated by the skeletal mesh for a given threshold T is
a rounded surface S which differs for the original mesh M. This surface may be
defined by sweeping a sphere of constant radius rT = g−1(T ) along the boundary
of M (Figure 4, left). To make the boundary of M and the T level surface to
correspond independently from the field function parameters, we incorporate the
threshold as an offset in a pseudo-distance function which is defined as follows:

d(p) =

⎧
⎨

⎩

dM(p) + rT if p is outside M
rT − dM(p) if p is inside M anddM(p) < rT

0 otherwise

Our distance function guarantees that the isosurface and the mesh boundary
mesh are the same for any value of T , as shown in Figures 4(right) and 5(right).

S

M

Ω

rT

R − rT

S

R

rT

Fig. 4. The distance offset mechanism on a 2D polygon. On the left, the basic distance
formula is used. The effect of our distance function is illustrated on the right.

The user keeps control on every parameter of the field function, and can
precisely control the range of the blend between two objects. The radius of
influence of the mesh, which falls from R to R− rT , is rescaled to R

(1− rT
R ) before

the evaluation so that the distance offset is hidden.
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Blend

Fig. 5. The Stanford Bunny mesh model (69,674 triangles) blended with an implicit
sphere. The result on the left uses the distance dM(p) whereas the model on the right
has been computed using our pseudo-distance function d(p).

The gradient of the field function ∇d(p) is evaluated as follows:

∇d(p) =

⎧
⎨

⎩

∇dM(p) if p is outside M
−∇dM(p) if p is inside M anddM(p) < rT

0 otherwise

As for implicit primitives, ∇d(p) is computed as the vector between the orthog-
onal projection of p onto the mesh M and p, that can be obtained as part of
the computation of d(p).

Computing the minimum distance between a point p and all the triangles
T of the mesh M is computationally expensive. Acceleration techniques have
been widely studied, not only in the Computer Graphics community [26]. Our
framework implements an algorithm inspired by Johnson and Cohen’s lower-
upper bound strategy [63]. We rely on a bounding box hierarchy based on a
Binary Space Partition tree, which is traversed breadth-first for each point-to-
mesh distance query. For each node we compute a lower and an upper bound
of the minimum point-to-mesh distance, which yields efficient space-pruning.
Moreover, we use the fact that the potential field falls to zero beyond the distance
R from the mesh boundary so as to reject more useless point-to-mesh distance
computations.

Point membership classification is obtained by computing the number of in-
tersections between a ray and the mesh using the bounding box hierarchy. In
order to reduce the number of cells to be traversed, the direction and the orien-
tation of the ray are chosen so that the distance between the query point and
the intersection point between the ray and the mesh bounding box is minimized.

4.3 Blending Operations

In our system, we propose two kinds of formulations for blending two surfaces :
one global and one local. Let A and B denote two models that blend together.
Global blending between two objects is functionally defined as originally pro-
posed by Blinn [3]:

fA+B = fA + fB
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The major drawback of this basic approach is the well-known unwanted blend-
ing problem [64]. To perform blending with local control, we have implemented
a new local blending operation adapting the local blending technique described
by Pasko et al. in [65]. This operation has three children. The first two, denoted
as A and B, represent the two models that will be partially blended together,
whereas the third, denoted as C, represents the region of space where blending
will occur. In our system, C is characterized by a potential field that is defined
as a union of implicit primitives denoted as Ci. Such a combination makes it
possible to build complex blending regions with predictible results. The field
function fC characterizes the blending region and is used to scale the amount
of blending between the two sub-trees A and B. The values taken by the field
functions fCi should range between 0 and 1. At a given point in space p, if
fC(p) = 0 then only union occurs, which is the case for any point outside the
region of influence of C. In contrast, if fC(p) = 1, full blending takes place nor-
mally. The evaluation of the local blending operation is performed as follows.
We first compute the potential field value resulting from the blending of the
children nodes fA+B(p) = fA(p)+ fB(p), and the field function value fA∪B(p).
We define the resulting field function as a weighted average:

fA+B(p) = fC(p) fA+B(p) + (1 − fC(p)) fA∪B(p)

Primitives build from a volume skeleton are very useful to define regions in space
where full blending occurs. In Figure 6, the local blending region C is defined as
the union of two implicit cylinders.

Local Blend

A

B

C

Fig. 6. Local blending. Two implicit cylinders define the blending region between the
Bunny and the wing pair.

For both blending techniques, the gradient is obtained by deriving the field
functions. For point membership classification, we distinguish positive and nega-
tive potential fields. A model A will be said to generate a positive potential field
if one of its primitive is such that I > 0. Conversely, a model A will be said to
generate a negative potential field if and only if every primitive it consits of is
such that I < 0.

Let A and B two models that globally blend together such that A and B
both generate a positive potential field. Point membership classification is then
achieved as follows:
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1. If p is located inside BA ∩ BB, then evaluate v = fA+B(p).
(a) If v < T , p lies inside the surface: return 1.
(b) Else, if v > T , p lies outside the surface: return −1.
(c) Else, p is on the surface: return 0.

2. Else, if p belongs to BA \ BB (resp. BB \ BA), then query point membership
on A (resp. B) and return the result.

3. Else, p lies outside the surface: return −1.

For local blending nodes such that A, B and C generate positive potential fields,
the previous algorithm is slightly modified. In Step 1, we consider the bounding
box BC of the local blending region and evaluate fA+B. In Step 2, we consider
the boxes BA \ BC and BB \ BC .

For global blending nodes such that A generates a positive potential field
and B generates a negative potential field, the previous algorithm is modified as
follows: In Step 2, if p belongs to BB \ BA, then p is outside the surface. If p
belongs to BA \ BB, then point membership is queried on A. If both A and B
generate negative potential fields, p lies outside the surface: −1 is returned.

Let us finally consider a local blending nodes such that C generates a neg-
ative potential field. If p is located inside BC , then p lies outside the surface:
1 is returned. Otherwise, if p belongs to BA \ BC (resp. BB \ BC), then point
membership is queried on A (resp. B) and the result is returned.

4.4 Boolean Operations

The min and max functions prescribed in [6] for union and intersection produce
gradient discontinuities in the potential function. This results in visible unwanted
normal discontinuities on the surface. We have adapted R-Functions with Cn

continuity prescribed in [5] to our model by incorporating the threshold value
as an offset in the previous equations. A weighting coefficient appears so as to
guarantee that the resulting field function has a compact support. We have:

fA∪B = T +
1

2 −
√

2

[
(fA − T ) + (fB − T ) +

√
(fA − T )2 + (fB − T )2

]

fA∩B = T +
1

2 +
√

2

[
(fA − T ) + (fB − T ) −

√
(fA − T )2 + (fB − T )2

]

Although min and max functions on the one hand, and R-Functions on the
other hand produce different potential fields in space, both representations pro-
duce the same implicit surface if the Boolean nodes are located at the top of the
tree structure. In this case, the computation of the min and max is computa-
tionally inexpensive compared to R-Functions. In contrast, we use the modified
R-Function equations to create a continuously differentiable potential field if
blending nodes are located above Boolean operations in the HybridTree. Our
system automatically adapts the function used to evaluate Boolean operations
depending on the context during the evaluation.
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For Boolean operations defined using the min and max functions, the gra-
dient at a given point in space is the gradient of the minimum or maximum
contributing field function between the two input models. Using the R-Function
formulation, the gradient is simply derived from the field functions.

Point membership classification is obtained through the standard operations
of Boolean algebra. For instance, the point membership classification for a dif-
ference operation between two models A and B is performed as follows:

1. If cA(p) = 1, then:

(a) If cB(p) = −1, then return 1.
(b) Else, if cB(p) = 0, then return 0.
(c) Else, return −1.

2. Else, if cA(p) = 0 and cB(p) ∈ {0, 1} then return 0.
3. Else, return −1.

4.5 Warping Operations

In our system, the shape of a surface can be distorted by locally warping space.
Our warping operations include affine transformations and Barr’s twist, taper
and bend deformations [60]. We also handle free-form deformations [8], denoted
as FFD, so as to perform local deformations. Throughout the following para-
graphs, A will denote the child object of a warping node, w a space transforma-
tion that maps R

3 into R
3, and w−1 the corresponding inverse transformation.

Barr Deformations. When the implicit formulation is required, twist, taper
and bend deformations are applied as warp functions. The resulting field function
is defined using the inverse warp function as follows:

fw(p) = fA ◦ w−1(p)

The gradient of the field function may be evaluated as:

∇fw(p) = JT
w−1(p) × ∇fA ◦ w−1(p)

where JT
w−1(p) denotes the transpose Jacobian matrix of the inverse warp func-

tion w−1 at p. For these deformations, the closed form expressions of w−1 and
JT

w−1(p) can be easily computed. The detailed equations can be found in [60]
(it should be noted that there are some mistakes in the formulas related to the
inverse bend transformation).

Point membership classification is achieved by computing the location w−1(p)
of the query point p in the unwarped space and then querying point membership
on A as follows:

cw(p) = cA ◦ w−1(p)
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Free-Form Deformations. Free-form deformations have been first introduce
by Sederberg and Parry in [8], and then have been extended by several au-
thors [66,67,68]. Applying local deformations in the implicit formulation is not
straightforward as there is no easy way of computing an analytical formulation
for w−1. In our framework, the field function for FFD operations is evaluated
using an intermediate mesh representation. The algorithm proceeds as follows:

1. Generate the mesh MA of A.
2. Deform MA by applying w to its vertices.
3. Evaluate the field function using the distance to the deformed mesh MA.

FFD nodes hold a mesh representation of their own resulting surface using this
method. Subsequent field function, gradient and point membership queries are
performed directly on this mesh without further recursion down to the subtree.
If A is a single primitive, the field function is evaluated using the potential
field function of A. If the local deformation extends to several primitives, their
local blending properties are replaced by a new potential field function that is
associated with the computed mesh. Therefore, these nodes should be located
at the lowest levels of the tree in order to preserve these local properties if they
are involved in further operations.

Affine Transformations. Affine transformations can be applied to implicit
surfaces as warp functions. The resulting field function can be defined using the
inverse transformation in the same way as for Barr deformations. However, this
requires to evaluate w−1 for every queries on the subtree. Benefitting from the
distributivity of affine transformations over Boolean and blending operations,
Fox et al. [69] prescribed to remove affine transformation nodes and directly
integrate them into the parameters of the primitives. In their method, the process
is blocked by warping nodes. In our system, we have extended the algorithm to
our local blending nodes and optimized it so that Euclidean similarities, including
rigid transformations plus uniform scaling, can be cast through Barr and FFD
nodes either. For these three operations, affine transformations are transmitted
to both the arguments and space parameters of the operation.

5 Polygonizing the HybridTree

The resulting surface of a HybridTree may be triangulated using standard im-
plicit surface meshing techniques, thanks to the previously defined field func-
tions. However, these techniques rely on many evaluations of the potential field
function, which is computationally demanding in the general case. In particular,
sampling the field function of a mesh primitive is an expensive task that is clearly
unprofitable if the mesh surface only interacts locally with other primitives.

For efficient meshing, we developed an incremental approach that preserves
existing mesh surfaces as much as possible and optimizes the mesh generation for
every kind of node using specific meshing algorithms. Local meshes are merged
together at blending and Boolean nodes to form the resulting mesh surface. The
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following paragraphs detail our meshing methods for skeletal implicit primitives
and for the different editing operations.

5.1 Skeletal Implicit Primitives

In our system, every implicit primitive automatically generates its mesh repre-
sentation very efficiently for a target level of detail. For every kind of skeleton,
we developed a specific and optimized meshing procedure that outputs a mani-
fold mesh characterized by an almost uniform sampling distribution and regular
connectivity (Figure 7).

Fig. 7. Meshes obtained by direct meshing (left) vs. Marching Cubes results (right)
for identical target edge length. From left to right: point, circle and box skeletons.

As mentioned previously, the T level surface of a skeletal implicit primitive
can be described by sweeping of a sphere of constant radius rT = g−1(T ) along
the skeleton. This isosurface corresponds to a 2d-manifold and will be polygo-
nized if and only if rT > 0. For most primitives, this surface can be defined as a
patchwork of simple surface pieces such as portions of sphere or cylinder, planes,
disks, which facilitates direct meshing. After having identified the different com-
ponents for a given primitive, taking symmetries into account, we sample each
part iteratively while establishing consistent connectivity relations. The level of
detail is fixed by the choice of a maximum edge length.

In comparison to standard implicit surface triangulation algorithms like the
Marching Cubes algorithm [17], timings demonstrate that our direct meshing
approach accelerates the polygonization process up to 200 times and produces
up to 30% fewer, better shaped triangles. Figure 7 shows the meshes of point,
circle and box primitives produced by our algorithms which compares favorably
to the Marching Cubes mesh outputs for the same precision.

5.2 Blending Operations

We generate the mesh at blending nodes using the implicit representation of the
surface. The computation of each sample point on the isosurface is an expensive
task that requires several field function evaluations. To save computational time
and preserve existing mesh surfaces, we restrict the computation of new sample
points to blending regions. Wherever two objects do not overlap very much,
we observed that it is better to generate the meshes of these objects before
combining them rather than computing the overall mesh from scratch.
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In the following paragraphs, we describe our meshing algorithms for global and
local blending nodes. For the global case, we will first assume that the objects
that blend together are associated with positive potential fields, which is the
most common situation. The algorithm for blending nodes involving negative
potential fields will be exposed subsequently.

Global Blending

We present two kinds of algorithms that differ in the way they process a Hy-
bridTree. The first node-based algorithm recursively traverses the tree data-
structure, everynodegenerating themeshof its ownsubtree.The secondalgorithm,
called primitive-based, is more independent from the tree structure and focuses on
the interactions between primitives.

Node-Based Algorithm. Let A and B to objects that globally blend together
into an object C. We suppose that A and B generate positive potential fields. If A
and B are only partially blended, then we create the mesh of C after the meshes
MA and MB. We use the Marching Cubes algorithm to generate the mesh in the
blending region. Otherwise, the whole mesh of C is generated by applying the
Marching Cubes algorithm from scratch. In both cases, Marching Cubes sample
points are computed by evaluating the local field function fA+B(p).

To determine the most favorable approach, we estimate how much the models
A and B overlap, i.e. which proportion of volume each one shares in the blending
region. Between A and B, blending occurs in the regions of space where fA and
fB are both positive. These blending regions are enclosed in the intersection of
BA and BB. We introduce a ratio ρ called overlapping ratio such that 0 ≤ ρ ≤ 1,
which is computed as follows:

ρ =
VA∩B

min(VA, VB)

where VA, VB and VA∩B denote the volume of the bounding boxes BA, BB and
BA ∩ BB respectively. Let 0 ≤ ρ0 ≤ 1 denote a fixed threshold. Without loss of
generality, assume VA ≤ VB . Our algorithm then proceeds as follows:

1. If ρ > ρ0, then:
(a) If VA

VB
≤ ρ0, then apply the Marching Cubes algorithm in the box that

bounds BA ∪ BB.
(b) Else:

– Create the mesh MB of B.
– Remove the triangles of MB that have at least one vertex pi such

that pi ∈ BA.
– Apply the Marching Cubes algorithm in BA.

2. Else:
(a) Create the meshes MA and MB of A and B respectively.
(b) Remove the triangles of MA and MB that have at least one vertex pi

such that pi ∈ BA ∩ BB.
(c) Apply the Marching Cubes algorithm in BA ∩ BB.



76 R. Allègre et al.

We invoke a crack fixing algorithm after each local Marching Cubes meshing
process in order to bridge the narrow gap between boundary triangles and output
a closed manifold mesh.

Before launching the polygonization process, we evaluate the ratio ρ for ter-
minal blending nodes and propagate the information up the tree structure. We
cluster consecutive blending nodes whose child nodes strongly overlap along the
same branch so as to treat them in one single Marching Cubes pass at the high-
est possible level of the branch, out of efficiency. The clustering process along a
branch stops as soon as a non-blending node is encountered.

The user can provide a value for ρ0 or directly specify which method should
be used for each blending operation involved in a tree. We choose ρ0 = 0.5 as a
default threshold, which appears as a good guess in most cases. In some situations
however, the overlapping volume between two objects can be significantly smaller
than the overlapping volume between their bounding boxes. The estimation of
the amount of blend could be refined by subdividing the bounding boxes and
considering overlapping sub-volumes.

Based on the analysis of the bounding box hierarchy, this approach is par-
ticularly simple and systematic. However, its performance clearly depends on
the structuration of the HybridTree. Some blending mesh parts generated from
different blending subtrees may be locally destroyed and remeshed several times
due to a non optimal binary tree structure. This limitation could be compensated
by a restructuration of the tree, but this kind of optimization is known to be
computationally expensive [59], and would not improve every configurations, as
illustrated by the model in Figure 8. Here, the blending node would be globally
polygonized using Marching Cubes although blending only occurs locally.

A

B

C

Blend

Union

A B C

Fig. 8. A HybridTree configuration for which our node-based polygonization technique
for blending nodes is not optimal

The difficulty is in fact intrinsic to the binary tree representation that cannot
explicitely describe the interactions that occur between more than two primi-
tives. To cope with non optimal HybridTree structures, we propose to extend
our first algorithm in the spirit of the space decomposition approach introduced
by Fox et al. in [69] that focuses on how primitives interact in space rather than
on the global tree structure.
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Primitive-Based Algorithm We distinguish two kinds of regions of space: the
regions RP that are influenced by a single primitive (Figure 9(a), light gray),
and the regions R+ where blending occurs (Figure 9(a), dark grey). Our goal is
to polygonize primitives using direct meshing in regions RP and to apply the
Marching Cubes algorithm in a single pass in regions R+. For this purpose, the
HybridTree is embedded in a regular grid and we rely on a modified Marching
Cubes algorithm to compute sample points in the bounding boxes of the blending
regions.

(b)

B

C

AA

B

C

A

B

C

(a)

Fig. 9. Our primitive-based optimized local meshing approach

Let {Pj}, j = 1..n denote the set of primitives involved in a tree, with bounding
boxes Bj. We define the overlapping ratio ρi for a primitive Pi as follows :

ρi =
VO(Bi)
V (Bi)

where V (Bi) denotes the volume of Bi and VO is the amount of volume of Bi

that is shared with the bounding boxes of the other primitives, i.e.:

VO(Bi) = V

⎛

⎝
⋃

j �=i

Bi ∩ Bj

⎞

⎠

where V (∪n
k=1Bk) is computed using the inclusion-exclusion formula:

V

(
n⋃

k=1

Bk

)

=
n∑

l=1

(−1)l+1
∑

m1<m2<...<ml

V (Bm1 ∩ Bm2 ∩ . . . ∩ Bml
)

Let G denote a regular grid in which the HybridTree is embedded. All the grid
cells are first initialized to ”0”. We proceed as follows for all primitives Pi:

1. Compute the set {Bi ∩ Bj}, j �= i, Bi ∩ Bj �= ∅, such that the first common
ancestor A of Pi and Pj is a blending node and Pj is not a right descendent
of a difference operation located below A.
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2. Align Bi and every box Bi ∩ Bj, j �= i on the grid G.
3. Compute ρi.
4. If ρi < ρ0 then:

(a) Create the mesh Mi of Pi.
(b) Remove the triangles of Mi that have at least one vertex pi such that

pi ∈ ∪j �=iBj .
(c) Mark ”1” all cells of G that lie in ∪j �=iBj .

5. Else, mark ”1” all cells of G that lie in Bi.

Our modified Marching Cubes algorithm then computes sample points along
the edges of ”1” cells and triangulates these cells.

Using this method, more implicit primitive mesh parts are obtained by direct
meshing and more existing mesh parts can be preserved. In Figure 9(b), the
regions that are polygonized using the direct meshing strategy are depicted with
a bold contour. Figure 10 shows mesh outputs of the restored Igea model from
Figure 14 for three different meshing approaches. In this model, several implicit
primitives are locally blended with the reconstructed mesh model of the Igea
point set, yielding a configuration that is similar to the one in Figure 8. The
polygonization results were obtained by applying the global Marching Cubes
algorithm (top-left), then our node-based algorithm (top-center), and finally our
primitive-based algorithm (bottom-left). Computational timings are reported in
Table 1, that also shows the number of new sample points computed on the
surface through the Marching Cubes technique. For this model, our primitive-
based algorithm is two times faster than our node-based algorithm.

In general, the local results of the Marching Cubes algorithm is overly dense
with respect to the local geometry. This may be improved using some mesh
simplification technique. Another interesting approach is to carry out the whole
meshing process, not only for input point sets, in the dynamic surface recon-
struction framework by Allègre et al. [14,15,16]. Starting from a reconstructed
surface, such as the Igea head model, together with the set of sample points gen-
erated by the Marching Cubes algorithm in blending regions, the reconstruction
local update capability of this framework makes its possible to directly obtain
a mesh whose sampling density is adapted to the local geometry, which saves
some connectivity computations and avoids a crack-fixing step. This technique
for local meshing can be also applied to polygonal meshes as well as to meshed
implicit primives in input of the HybridTree, provided the facets are embedded in
the Delaunay triangulation of their vertices. The bottom-right image in Figure 8
shows a remeshed version of the result of the primitive-based algorithm obtained
through this dynamic reconstruction approach (note that a slightly finer sam-
pling was chosen for the initial reconstruction of the Igea model in this picture).
Local reconstruction update with on-the-fly subsampling can be performed at a
rate of 1500 points per second, which means an interactive rate in most cases.
A complete integration of the HybridTree framework with the dynamic surface
reconstruction framework is currently under development.

The computation of the intersection boxes between every pair of primitives is
achieved in time O(n2), where n denotes the number of primitives. For a given
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Fig. 10. Several polygonization results for the restored Igea model from Figure 14

Table 1. Polygonization timings (in seconds), number of new sample points computed
by the Marching Cubes technique and number of triangles for global Marching Cubes,
node-based and primitive-based meshing (computations performed on a Pentium IV
3.0GHz - 1GB workstation)

Method Polyg. time #Sample points M.C. #Triangles
Global M.C. 1,533.02 54,420 108,836
Node-based 19.82 8,299 61,980

Primitive-based 9.67 2,592 58,458

primitive, the overlapping ratio is evaluated in time O(n2) in the worst case. As a
consequence, the performance of our primitive-based algorithm may decline over
a set of primitives that are all tightly blended together. However, in practice,
the number of primitives that effectively contribute to the final potential field
at a given point in space is generally small compared to the overall number of
primitives involved in a particular model.

Our primitive-based method also requires to store a grid of size m3 with only
1 bit per cell. For a grid with 3003 cells, which was the maximum in our tests,
this represents less than 3.5 megabytes of main memory. The time for traversing
the set of cells is negligible against the polygonization process. If more precision
is needed or if memory is a critical resource, then the node-based approach may
be more profitable, or an adaptive grid could be used.

Negative Blending. Suppose that A generates a positive potential field and
B a negative one. In this case, our algorithm proceeds as follows:

1. Create the mesh MA of A.
2. Remove the triangles of MA with at least one vertex pi such that pi ∈ BB.
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3. Apply the Marching Cubes algorithm in BB and invoke the crack fixing
algorithm to close the gap.

Local Blending. Here we suppose that A and B generate positive potential
fields, which is not required for C. The polygonization local blending nodes is
achieved as follows:

1. Create the meshes MA and MB of A and B respectively.
2. Compute the mesh MD of the union D between A and B.
3. Remove the triangles of MD that have at least one vertex pi such that

pi ∈ BA ∩ BC or pi ∈ BB ∩ BC .
4. Apply the Marching Cubes algorithm in BR and invoke a crack fixing algo-

rithm to close the gap.

5.3 Boolean Operations

Computing the mesh resulting from Boolean operations is achieved as performed
by standard B-Rep modelers. Our approach takes advantage of the dual im-
plicit/mesh representation of the HybridTree. We rely on the implicit represen-
tation of the child nodes to perform point membership classification efficiently.
The algorithm may be written as follows for any of the union, intersection or
difference operations:

1. Create the meshes MA and MB of A and B respectively.
2. If BA and BB overlap, then compute the resulting mesh surface using the

point membership function of A and B for point membership classification.

To determine whether two triangles overlap and clip them properly, we use
the fast and robust triangle-triangle overlap test proposed by Guigue and Dev-
illers [70].

5.4 Warping Operations

We first create the mesh MA of the child node A. Then the deformation is applied
to the mesh MA by simply changing the coordinates of the vertices of the mesh pi

into w(pi) so as to obtain the deformed mesh. Translation, rotation and uniform
scaling preserve the aspect ratio of the triangles, whereas non uniform scaling or
twisting, tapering andbendingmay stretch the triangles into flat triangles. In those
cases, we apply a simple local remeshing process based on edge collapse and vertex
insertion to get better shaped triangles. Another interesting approach could be to
exploit the dynamic surface reconstruction framework as for blending operators.

6 Results and Discussion

In this section, we present some complex models created by combining and de-
forming skeletal implicit models built from hundreds of implicit primitives, and
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meshes and point sets with tens of thousands of elements. Table 2 reports the
timings for polygonizing the final models (in seconds), as well as the overall
number of triangles. The given preprocessing timings take into account the time
taken to build the bounding box hierarchy for mesh models and the initialization
of the Marching Cubes grid when the second local meshing algorithm is used for
blending nodes. These timings do not include the time needed to reconstruct a
mesh model from an input point set when involved in our hybrid models. For
the Igea point set that we used, the time taken to produce a triangle mesh was
29 seconds with the latest implementation of the dynamic geometric convection
framework. Measures were performed on a Pentium IV 3.0GHz - 1GB RAM
workstation.

Table 2. Preprocessing and polygonization timings (in seconds) and number of trian-
gles for polygonizing several complex hybrid models

Figure Preproc. time Polyg. time #Triangles
1 4.63 63.85 171,562
6 1.72 48.16 105,467
11 0 14.02 121,271
12 1.97 21.24 94,862
13 6.85 56.35 269,698
14 1.58 9.12 58,458

6.1 Free-Form Modeling

The Winged Snake-Woman. Figure 1 shows blending and Boolean operations
applied to implicit and mesh input models. The original snake-woman (Fig-
ure 1(a)) is an implicit model built from 250 spline implicit primitives blended
together, which is stored in our own library of models. The body has been first
blended with a mesh of the Igea model (62,323 triangles) that was automati-
cally reconstructed from a dense point set, and with the wings of the Victory
of Samothrace (16,340 triangles). The mesh creation process first invokes the
polygonization of the implicit snake-woman model. The Marching Cubes algo-
rithm is used as all implicit primitives are overlapping much. The resulting mesh
consists of 121,524 triangles, and took 6 seconds to generate. The head has been
removed using Boolean difference with an implicit sphere primitive, and the
body has been blended with the Igea model using our local meshing method.
The wings were extracted from the Victory of Samothrace mesh model by in-
tersecting the original model with an implicit box. The wings and the modified
snake-woman model have finally been blended together using the local meshing
method.

The bowl. The bowl in Figure 11 has been created using blending operations.
The interior of the Igea model has been carved using a negative potential field
generated by a cylinder implicit primitive. Handles built from two implicit circle
primitives have then been added using our local blending operation.
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Blend

Blend

Fig. 11. A bowl created from the Igea model

The bottle. The bottle in Figure 12 has been create from the implicit bottle model
of Figure 3 that incorporates 5 complex skeletal implicit primitives. We first
applied our Free-Form Deformation tool, which necessitates the polygonization
of the bottle model. Additionally, 12 holes have been created using Boolean
differences with implicit spheres.

Union

FFD

Difference

Fig. 12. Bottle with holes

The Victory Figure 13 shows a statue model based on the Victory of Samothrace
mesh model (187,072 triangles), that has no head and no arms. We picked up
the arms of the original snake-woman implicit model, that consist of 18 implicit
spline primitives each, and we have blended them locally with the Victory of
Samothrace mesh model using implicit spheres located at each shoulder. We
have blended the resulting surface locally with the Igea head using an implicit
cylinder placed around the neck. We have finally completed our custom Victory
model by adding a shepherd’s crook in the right hand.

6.2 Virtual Restoration of Artwork

Our model is well-suited for modeling complex shapes either from existing mod-
els or from scratch. It could also be advantagely used for the purpose of digital
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Fig. 13. A Victory model

preservation of cultural heritage artwork, which has become a very challenging
research domain. Our HybridTree structure can be efficiently used to simulate
restoration or natural phenomena [71] effects on digitized pieces of artwork and it
naturally maintains the history of every operation, which is useful for archiving
purposes.

Figure 14 shows a virtual restoration process on the Igea model using the
HybridTree. We were interested in filling in the ridges on the right of the chin
and on the left cheek, and restoring the nose, exactly as a specialist could do. We
used our blending tools to simulate cementing in a very intuitive and realistic
way. We have placed implicit spline primitives along each ridge and one implicit
point primitive at the tip of the nose, and we have blended them with an Igea
mesh model. We have built an independent subtree for the set of primitives of
the chin and the another for the nose. The former has been polygonized using the
Marching Cubes algorithm, as the primitives overlap much. Then, the resulting
mesh has been blended with the Igea model using the local method. The same
approach has been used for the nose.

6.3 Discussion

Performance Our system can handle complex implicit primitives and polygonal
meshes of up to 25,000 triangles at interactive rates. Free-form deformations as
well as local blending may be performed interactively for not too fine resolutions.
Boolean operations combining small objects compared to the overall size of the
final surface may also be performed at interactive rates.

The conversion step between triangles meshes and implicit surfaces is a crit-
ical limiting factor regarding computational performance. The computation of
the potential field function generated by a mesh at a given point in space re-
mains computationally expensive, despite our acceleration technique. Experi-
ments demonstrate that a field function query performed on a complex mesh
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Fig. 14. Virtual restoration stages of the Igea Greek artifact. The initial reconstructed
Igea mesh is on the left. In the center image, material has been added to fill in some
cavities. On the right is shown the partially restored model.

can have a cost in time that is up to several hundreds times the cost of the same
evaluation performed on a point primitive.

For interactive shape design or animation, the evaluation could be acceler-
ated by sampling the potential field on a regular grid and caching computed
field values [72]. An approximation of the surface can be retrieved by tricubic
interpolation. This approach involves an increased cost in memory and possible
loss of geometric and topological information.

Storage. The HybridTree data-structure significantly reduces the amount of
memory needed for storing complex models. Contrary to Level Set [37] or Adap-
tive Distance Fields models [38], we do not store any voxel grid or octree, which
saves memory. The use of complex implicit skeletal primitives enables us to
design complex shapes with a very compact representation. The snake-woman
model represented in Figure 1 was created by blending a few hundred spline
skeletal primitives together. The corresponding HybridTree representation takes
less than 64 kilobytes in memory.

Shape control. The ability to combine mesh models and skeletal implicit surfaces
in a coherent framework not only extends the range of models that can be created
but also permits us to have a tight control when editing our models.

The implicit surface representation enables blending of meshes of arbitrary
topology and geometry. This compares favorably with other specific mesh blend-
ing methods such as [53] or [41] that impose some geometric or topological re-
strictions. Moreover, our local blending technique provides fine control on the
way shapes blend together. The designer may simply tune the radius of influ-
ence for mesh or implicit primitives so as to control the geometry of the blend
with other objects. The implicit representation also provides means of creating
negative blending between shapes, which is useful for simulating carvings. Even-
tually, our Free-Form Deformation tool enables intuitive, non restrictive local
deformations on hybrid models.
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7 Conclusion and Future Work

In this paper, we have presented a hybrid constructive shape representation. Our
model combines skeletal implicit surfaces, triangle meshes and point set mod-
els in a coherent framework. The HybridTree’s evaluation system is designed
to exploit the complementary advantages of these geometric models. The core
of our current system is based on a dual skeletal implicit/triangle mesh repre-
sentation. Editing operations are performed in the most suitable representation
in a totally transparent way for the user. The mesh representation is useful for
fast visualization and free-form deformations, and the implicit one lend them-
selves for Boolean, and local and global blending. The HybridTree is evaluated
through field function, gradient, point membership classification and polygoniza-
tion queries that are optimized for every kind of node.

The HybridTree should be considered as an open model, capable of integrating
many other representations through gateways with available surface models. The
most well-suited representation for an operation could then be chosen according
to finer criteria, such as the representation that provides the fastest result or the
best quality possible result. Other criteria could be progressivity or point-of-view
in a scene, in order to avoid some useless computations.

The HybridTree model still deserves many improvement to develop its poten-
tial and bring it to maturity. Our implementation currently has only a declarative
interface. It would be interesting to develop an interactive modeling interface.
That would yield new research issues, such as bringing unicity in the repre-
sentation of the geometric information and achieving reversibility in the eval-
uation process. This also arises the question of animating HybridTree models.
The current representation can already support keyframing animation, provided
the same tree structure is maintained all along an animation. Our local meshing
strategy can be a benefit for interactive visualization of animations, and could be
improved for this particular purpose, in order to discard useless computations. If
the structure is likely to change, e.g. for metamorphosis, then a new evaluation
strategy would be required, taking matching problems into account [7].

We will investigate the automatic management of levels of detail in the Hy-
bridTree. We think that it should be possible to combine skeletal implicit prim-
itives with levels of detail as presented in [73] with multiresolution meshes and
subdivision surfaces. Moreover, levels of detail in the HybridTree could be ex-
ploited to improve the locality of conversions, e.g. with blending operations, by
making it possible to determine the affected regions more precisely than when
just using bounding boxes. In the near future, we also plan to extend the inte-
gration of the point set representation into the HybridTree. This representation,
that avoids the management of connectivity relations, could be interesting for
interactive visualization [74].

The evaluation system of the HybridTree could benefit from an integration
with the dynamic surface reconstruction framework developed by Allègre et
al. in [14,15,16] for every meshing step between two subtrees. This could make
it possible to directly produce meshes of hybrid models in a seamless fashion, and
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with sampling density adapted the local geometry. Another appealing perspec-
tive of this integration would be to develop tools for locally repairing defective
reconstructed surfaces from point sets with missing or noisy data using an in-
termediate implicit representation [75,76].
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Abstract. The implicit complex model allows for the representation
of heterogeneous objects as multidimensional point sets with multiple
attributes, where elements of different dimensions and with attributes
of different nature are combined together in a topological structure. In
this chapter, we present in detail the underlying function-based model
for a certain class of cells to be used among several others in the implicit
complex model. Each cell is dimensionally homogeneous and defined by
a real vector-function.

We provide a brief survey of different modelling techniques related to
point sets with attributes. It spans such different areas as solid modelling,
scalar fields, volume models, and material modelling. Then, on the basis
of this survey we formulate requirements to a more general model.

In the presented generalizing constructive hypervolume model, point
set geometry and attributes are represented independently using real-
valued scalar functions with their underlying tree data structures. While
3D and higher dimensional entities have been widely studied, we present
function-based definitions of lower dimensional entities, such as surface
patches and curve segments, with a corresponding trimming technique.

A high level language supporting modelling function-based cells and
attributes is described and illustrative examples are provided.

1 Introduction

The implicit complexes presented in this volume [22] allow for modeling hetero-
geneous objects as multidimensional point sets with multiple attributes, where
elements (cells) of different dimensions and with associated different attributes
are combined together in a single topological complex. In this survey, we present
in detail the underlying model for a certain class of cells, where each cell is
dimensionally homogeneous, has a number of attributes assigned at each point,
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and with both geometry and attributes defined by real functions of point
coordinates.

We consider cells as point sets in geometric spaces of arbitrary dimension. A
point set is a geometric model of a real or abstract object under consideration.
An attribute can be defined as a mathematical model of an object property of
arbitrary nature defined at any point of the point set. For example, to model a
mechanical part with varying internal material distribution one can introduce a
three-dimensional solid as a point set and a real-valued scalar function to repre-
sent material density as an attribute. Application areas of such models include
fabrication of objects with multiple materials and varying material distribution
[26,25]; simulations for the analysis of physical fields distribution over geometric
areas [31]; modeling and analysis of geological structures [18]; biological modeling
and medical examination [17]; and volume graphics [23].

In general, multidimensional point sets with an arbitrary number of attributes
of different mathematical nature (scalar, vector, tensor, etc.) can be introduced
in various ways depending on the application. Following [35], we present in Sec-
tion 2 a brief survey of different modeling techniques related to point sets with
attributes. This survey spans such areas as solid modeling, heterogeneous objects
modeling, scalar fields or ”implicit surface” modeling, and volume graphics.

The function representation (FRep) [36] is used as the basic model for both
point set geometry and attributes. With this model briefly described in Section 3,
the point set and its attributes are represented independently by real functions.
Each function can be associated with a tree structure and is evaluated by a
tree traversing procedure. This reflects the constructive nature of the symmetric
approach to modeling geometry and the associated attributes. FRep provides a
rich system of primitives, operations and relations for modeling both geometry
and attributes. On the base of recent works in these areas we describe in Section
4 a constructive hypervolume model using vector functions.

Lower dimensional entities can also be modeled using FRep. For example,
the geometric domain of FRep in 3D space includes solids with non-manifold
boundaries and lower dimensional entities (surfaces, curves, points) defined by
zero value of the function. The lower dimensional objects in 3D space can be
defined by real functions as follows:

– definition of a surface patch requires a trimming operation implemented as
intersection between an ”implicit” surface and a trimming 3D solid;

– a curve can be defined as the intersection of two surfaces;
– a point can be defined as the intersection of three surfaces, a curve and a

surface, or directly as d(x, y, z), where d is a negative distance to the given
point.

Section 5 of this document presents surface and curve modeling using a trimming
operation. Finally, Section 6 is devoted to the implementation of the constructive
hypervolume model in the form of a special modeling language and its supporting
software tools.
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2 Models of Point Sets with Attributes

There are several interrelated directions in the research on modeling point sets
with attributes. In this section, we provide a brief survey of these directions
and discuss the following aspects of different approaches: model of a point set,
point set dimensionality, types of attributes, attribute model, and operations on
attributes.

Computer graphics, solid modeling, and volume modeling (based on the binary
spatial occupancy enumeration [44]) in their early stages dealt with 3D and
higher dimensional homogeneous objects of different dimensions (points, curves,
surfaces, solids). Attributes could be assigned only to the entire object, but not to
its components. No operations on attributes were provided. The first attempt to
represent heterogeneous objects was texture mapping in computer graphics with
its essential limitation that attributes can be assigned to the object surface, but
not to points throughout its volume. The following models attempt to represent
a volumetric distribution of attributes with different levels of generality.

Scalar fields. Real functions of three variables (also called scalar fields) defined
for point coordinates in 3D space can be interpreted as defining functions of some
isosurfaces (”implicit” surfaces [15]). On the other hand, real functions can define
volumetric attributes such as material density to model amorphous and gaseous
phenomena [14]. Special operations simulating noise and turbulence are applied
to the attributes.

Heterogeneous volumes (discrete fields). As an extension of the homoge-
neous volume models with binary encoding of voxel occupancy, integer or real
scalar values can be given in the nodes of a regular or a non-regular space grid
of a heterogeneous volume model (voxel array). This model is close to the scalar
fields and can be considered a discrete field. Processing of scalar values given at
a discrete set of points requires some approximation procedure [30]. The scalar
values can represent the geometry of a point set (e.g., by a density field [55] or
a distance field [40,21,20]), object’s color, and other attributes. Operations on
non-geometric attributes include approximation of scattered data [30], different
kinds of filtering, and other application specific operations.

Multi-material solids. The next step towards modeling heterogeneous objects
was the introduction of solids composed of multiple materials. A systematic ap-
proach to multi-material solid modeling was proposed in [26]. A 3D solid is sub-
divided into components made of unique materials. A non-manifold Boundary
Representation (BRep) is used to model such objects. Each component is homo-
geneous inside and has an assigned index of material. Regularized set-theoretic
operations are applied to the solid components. Corresponding operations on ma-
terial indices are introduced on the basis of the resulting material selection for
each pair of materials and for each set-theoretic operation. A similar approach
was adopted in Svlis [8] which is an elaborated Constructive Solid Geometry
(CSG) system.
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Constructive Volume Geometry. The Constructive Volume Geometry
(CVG) [11,12] defines a spatial object as a tuple of scalar fields in 3D space.
Special attention is paid to the first field in the tuple, which is an opacity field
specifying the visibility of every point in space. This has obvious limitations for
defining the objects geometry which has to be independent of any visual char-
acteristics. Other visual (photometric) attributes can be included in the model:
color, ambient, diffuse, and specular reflection parameters. Several operations are
introduced for the opacity field (union, intersection, difference, blending, etc.)
together with corresponding operations for other attributes. Discrete fields can
be used in the tuple along with some interpolation procedure.

Hypervolumes. The term hypervolume was introduced in [4] to denote a dis-
crete scalar field embedded in n-dimensional (nD) space. The hypervolume is
defined by an nD regular grid with scalar values given at the grid nodes. A 3D
volume changing in time is a typical example of a hypervolume in the 4D space.
The authors described a projection operation of such a hypervolume to a 2D
point set with color attributes used for visualization. A hierarchical representa-
tion of nD discrete scalar fields in the form of tree structures was proposed.

Object model. A general object model [25] was designed to include all the
characteristics and attributes of an object. Geometry is considered the most
fundamental attribute of an object. All other attributes are described as a func-
tion of geometry. A 3D point set (so-called r-set in E3) is represented by its
decomposition (atlas) into a finite set of closed 3-cells. The authors proposed to
use BRep scheme to model individual cells and the entire point set. Each point
of the point set is mapped to its corresponding attribute, which can be a vector
or a tensor. The model of attributes is a collection of functions mapping the ob-
ject geometry to several attributes. This is a generalization of the multi-material
solid model [26] discussed above. Basic operations on attributes include vector
sum and product with scalar, union, intersection and complement specialized for
specific attributes as abstraction of the material combining operation in [26].

Continuous attributes modeling. Recently, a particular attention has been
paid to heterogeneous object modeling, where an object has a number of non-
uniformly distributed attributes assigned at each point and varying in space.
These attributes may be continuous or piecewise continuous and are of different
nature such as material density, stress or other physical fields distribution.

In the work [25] mentioned above, a more general model is proposed where the
attributes are defined by a collection of functions, which map the object geometry
to several attributes. Such a mathematical model is known as a fiber bundle, with
the geometrical model playing the role of the base space. Several other works
are using the same model, extending it in various directions [5,10]. However,
as noticed in [6], such a model does not really offer concrete computational
solutions.

Discrete volumetric representations using voxel arrays or scattered data points
canbe extended to support continuous attributes with some special approximation
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procedures [31]. The inherent drawback of these models is the difficulty to directly
describe thematerial distributionwithout using data acquisitiondevices (therefore
it is supposed that the object to be modeled already exists).

A continuous volumetric representation was proposed in [43], where a B-spline
volume is used to model the object geometry, whereas the attributes are modeled
by means of diffusion. This model seems to suffer from the lack of flexibility of
the geometry model limited to volume splines.

Biswas et al. [6] are interested in the representation and control of material
distributions using some intuitive parameters related to the geometry of the
solid and/or its material features for mesh-free modeling. They propose to use
the distance functions from material features (point-sets of any dimension with
known material properties) as these parameters. It appears from the existing
literature that the (Euclidean) distance, or functions of the distance are the most
common types of material functions considered in the area of the functionally
graded material modeling [19,53,28,1]. The authors of [6] also prove that this
approach is theoretically complete as it can represent all material functions.

Discussion. Historically, separate treatment of geometry and attributes was
introduced in computer graphics for rendering textured surfaces. Voxel arrays in
volume graphics can be considered as attribute models with the default geom-
etry represented by a bounding box. The next step of models development was
to combine geometric and attribute representations in a single model. In solid
modeling, this was done for multi-material solids [26] with the material indices
assigned to different geometric regions. Then, this approach was generalized in
the object model [25] covering arbitrary geometry and multiple attributes of
different mathematical types (scalars, vectors, tensors) defined at each point.
Only 3D geometry is considered in the object model with the boundary repre-
sentation being the primary geometric model. The object model does not include
voxel arrays or scalar fields for modeling geometry.

In volume modeling, CVG [11,12] was the first model combining geometry
and attributes in a systematic manner. The model is presented as an algebra of
spatial objects with operations available for both geometry and attributes. The
model allows for utilizing both voxel arrays and continuous scalar fields. The use
the opacity field in the CVG model to ”implicitly define the visible geometry of
an object” is somewhat controversial, because in reality, the shape of an object
does not necessarily predefine its photometric characteristics and vice versa. We
believe it is important that a point set and its visual and physical characteristics
are represented independently.

Note that CVG has been originated in volume graphics and is mainly aimed
to providing more flexible object and scene definitions in volume rendering. The
idea of hypervolumes reflected the importance of modeling and visualization
of time-dependent volumetric objects. On the other hand, the object model
introduced in the area of solid modeling is oriented towards the mechanical design
and rapid prototyping applications. Functionally graded materials modeling and
fabrication is one of the active research areas in CAD/CAM [1]. All the above
mentioned areas of research exist separately and the motivation of our work is
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to introduce a universal model that can be suitable for all application areas of
heterogeneous objects modeling.

3 Function Representation

As it can be seen from the previous section, scalar fields and constructive op-
erations are useful components in modeling point sets and attributes. In this
section, we discuss their further integration in the framework of the function
representation. The function representation (FRep) was introduced in [37,36] as
a uniform representation of multidimensional geometric objects. FRep is formu-
lated as an algebraic system including sets of objects, operations and relations
on them. An object (point set) in multidimensional space is defined by a contin-
uous real-valued function of point coordinates F (X). The points with F (X) ≥ 0
belong to the object, and the points with F (X) < 0 are outside of the object.

The idea of representing the entire object by a single function has been used
in modeling implicit surfaces. In this sense, FRep generalizes implicit surface
modeling by combining them with the constructive modeling approach. The
complex object is defined by starting from simple (primitive) ones and applying
a sequence of constructive operations to them. Thus, FRep generalizes Con-
structive Solid Geometry (CSG) by providing a single function for a complex
constructive solid. The geometric domain of FRep in 3D space includes solids
with non-manifold boundaries and lower dimensional entities (surfaces, curves,
points) defined by zero value of the function. The main distinctive characteristic
of FRep is that the real-valued function defining the point set is evaluated at
the given point by a procedure traversing a tree structure with primitives in
the leaves and operations in the nodes of the tree. This construction tree is the
generalization of the one used in CSG.

A primitive can be defined by an equation or by a ”black box” procedure
converting point coordinates into the function value. Solids bounded by alge-
braic surfaces, skeleton-based implicit surfaces, and convolution surfaces, as well
as procedural objects (such as solid noise), and voxel objects can be used as
primitives (leaves of the construction tree). In the case of a voxel object (dis-
crete field), it should be converted to a continuous real function, for example,
by applying the trilinear or higher-order interpolation.

Many operations such as set-theoretic, blending, non-linear deformations,
metamorphosis, sweeping, hypertexturing, and others, have been formulated
for this representation in such a manner that they yield continuous real-valued
functions as output [36,48], thus guaranteeing the closure property of the rep-
resentation. As it was mentioned in the previous section, the application of
min/max functions for set-theoretic operations results in C1 discontinuity of the
resulting function. On the other hand, R-functions originally introduced in [46]
provide Ck continuity for the functions exactly defining the set-theoretic opera-
tions. Because of this property, blending, deformations, metamorphosis and other
geometric operations can be formulated using algebraic operations applied to
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defining functions of complex constructive objects [36,48]. More details on spe-
cific primitives and operations can be found in [33].

Relations defined on a set of objects are used to formulate some operations and
to appropriately process FRep objects in applications. Such basic relations as
point membership and the collision (interpenetration) relation are also important
for point sets with attributes as long as they are used not only for visualization
but also for modeling purposes.

We can state that FRep satisfies the following requirements to the basic model
of a point set with attributes: constructive type of model, usage of continuous
and discrete scalar fields, and dimensionality independence. In this survey, we
describe applications of FRep for modeling point sets geometry, space parti-
tions for attributes, and lower dimensional trimmed objects. In contrast to the
approaches described in the previous section, uniform treatment of objects of
different dimensions provides basis for modeling time-dependent and multidi-
mensional point sets with attributes.

4 Constructive Hypervolume Modeling

Based on the survey presented in the previous sections, we can formulate the
requirements for a general model of point sets with attributes:

– Independent representation of the point set and its attributes;
– Coverage of time-dependent and other multidimensional point sets;
– Uniform treatment of point set geometry, photometric, physical, and other

attributes of an arbitrary nature;
– Constructive modeling of both point set geometry and attributes using prim-

itives, operations, and relations;
– The ability to model geometry and attributes using real-valued functions

(scalar fields).

In this section we discuss a general model of constructive hypervolumes intro-
duced in [34,35] to satisfy the requirements listed above. Extending the FRep
formal model introduced in [36], let us describe a general hypervolume model
as a triple (O, Φ, W ), where O is a set of hypervolume objects, Φ is a set of
hypervolume operations, and W is a set of relations for the set of objects. Math-
ematically, the triple can be treated as an algebraic system. Here we give an
outline of the formal framework to be further elaborated elsewhere.

4.1 Objects

A hypervolume object can be expressed as a tuple, o = (G, A1, . . . , Ak), where
G is a multidimensional point set and Ai is an attribute. In 3D, a point set
G can be defined using any existing representational schemes for solids: Brep,
CSG, spatial partitioning, generative models, ray implementation, and others
(see section 2.1). In the multidimensional case, one can apply multidimensional
extensions of CSG or Brep [56,16], or originally multidimensional models such
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as the generative model [54] and the FRep [36]. Here we introduce a specific
”FRep” representation of the hypervolume object that can be expressed as:

o = (G, A1, . . . , Ak) : (F (X), S1(X), . . . , Sk(X)) (1)

where :

– X = (x1, . . . , xn) is a point in n-dimensional Euclidian space En,
– F : X → � is a real-valued defining function of point coordinates to represent

point sets G. Therefore, F is at least a C0 continuous function, which is
positive inside the point set, negative outside, and has a zero value on its
boundary.

– Si : X → � is a real-valued scalar function representing an attribute Ai that
is not necessarily continuous.

4.2 Constructive Tree Data Structure

We call the introduced representation a constructive hypervolume model to em-
phasise the underlying constructive process while modelling functionally based
multidimensional point sets with attributes. As it was described in [36], formally
specified in [33], and recalled in the previous section, the main distinctive feature
of FRep is that the real-valued function F defining the point set is associated
with a tree structure that serves as its underlying representation. The function
F is evaluated at the given point by a procedure traversing the tree structure
with primitives in the leaves and operations in the nodes of the tree.

As to the constructive hypervolume model, its underlying representation can
be defined in a similar way by introducing a set of tree structures. Along with
the tree corresponding to a function F defining the point set, there are con-
structive trees associated with functions {Sj} defining attributes and reflecting
the construction logic of the attribute definition. Two main types of elements of
the set O are considered: basic hypervolume objects (primitives) and complex
hypervolume objects. A hypervolume primitive is a specific instance of a func-
tion chosen from a finite set of possible types. A complex hypervolume object
is the result of operations on primitives. The tree structure with hypervolume
primitives in the leaves and hypervolume operations in the nodes of the tree pro-
vides the computational scheme for complex hypervolume objects. Some nodes,
including root nodes corresponding to the whole complex object, can refer to
the hypervolume relations.

The function Sj is evaluated at the given point by a tree traversing procedure.
Thus, symmetry in treating the point set and its attributes can be achieved in
accordance with the constructive nature of the definition and the underlying
representation. A formal description for the traversing procedure for the FRep
constructive tree [37,33] is easily adaptable to hypervolume constructive trees.

The constructive tree is similar to one used in CSG, and is created during the
object construction process. In contrast to classical CSG, the sets of primitives
and operations are not fixed and can easily be extended without redesigning
the modelling system, and all operations are applicable on any level of the tree.



98 B. Schmitt et al.

                 (a)                                             (b)                                              (c) 

Fig. 1. Density of a composite material rendered using greyscale. (a) The cylinder
corresponds to the matrix with a constant density. This is the geometrical tree. (b) Re-
inforcement material composed of microspheres with constant density. (c) Visualisation
of the density of the composite material.

As to the geometric constituent, solids bounded by algebraic surfaces, skeleton-
based implicit surfaces and convolution surfaces, as well as procedural objects
(such as solid noise), swept, and discrete field objects can be used as primitives.
Let us mention in particular that the framework is general enough to embrace
multidimensional discrete field (voxel) objects represented as ”hybrid volumes“
[2] that can also be treated as primitives.

Many operations that have been formulated for FRep in such a manner that
they in turn yield continuous real-valued functions as their output [36,48] can be
generalised to produce more specific hypervolume operations. Of course, there
can be introduced a much more application-specific operations over attributes
that can hardly be sensibly applied to the geometry.

4.3 Heterogeneous Material Modeling

Heterogeneous objects are omnipresent around us. We consider two simple ex-
amples here that are direct applications of the constructive hypervolume model.

Composite materials are widely used in the industry. They are composed of
several elementary materials providing properties that each single element does
not have. Usually, such materials can be decomposed in two parts called matrix
and reinforcement materials. The reinforcement material confers a skeleton to
the composite material, and the matrix makes an envelope. In Fig. 1, we show an
example of composite material, and focus on a single attribute A, the material
density. There are two steps in making this model: description of the geometry
and description of the attribute. The geometry, i.e., the matrix, is defined as
a cylinder F (X) shown in Fig. 1a. The reinforcement material is defined as
microspheres, corresponding to a function Fs that defines their location in space.
It is defined as a FRep tree with several spheres in the leaves and set-theoretic
unions in the nodes. A constant density corresponds to each material.
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To visualise the resulting object, the density value is mapped to a greyscale
colour. Then, for every given point X , a first tree traversing procedure is applied to
the geometrical tree F (X). When F (x) ≥ 0, another tree traversing procedure is
applied to Fs(X) to determine the density value. In the case where Fs(X) is posi-
tive, the resulting density is the density of the microspheres, otherwise, the density
of the cylinder is returned. The resulting composite material is shown in Fig 1c.

The second example shows another heterogeneous object, where a sheathed
electric cable is modeled. The sheath is made of plastic and three different cables
are embedded inside. One of them has the same orientation as the sheath, and
the two other round it up. Each cable is composed of a gainer made of different
plastics too, and it has copper inside. The three cables are then surrounded with
a twisted pair made of another material. We model this object as a construc-
tive hypervolume. The geometry is defined as a single cylinder, using a function
Fgeom, and the attributes a represented by a material index vector. The con-
structive hypervolume object is defined as o = (Fgeom, A). One needs then to
define the spatial occupation of each material. Different constructive trees are
built for this purpose, i.e., three for the different kinds of plastics corresponding
to the material indices A1, A2 and A3, one tree for the copper index A4, and
another tree for the material of the twisted pair, corresponding to the index A5.
The material of the embedding sheath is the default attribute, and does not
require an additional tree. Figure 2 shows these tree structures.

5 Lower Dimensional Objects Modelling Using Trimming

When one considers a heterogeneous object, the heterogeneity does not in-
clude only material distribution. An object can be dimensionally heterogeneous
(mixed-dimensional). It means that an object can be composed of several parts
of different dimensions, i.e., points, curves, surfaces and solids. A mathemati-
cal model of heterogeneous objects based on cellular complexes and functional
representations combned into implicit complexes is described elsewhere in this
volume. This model provides reliable mathematical operations for combining het-
erogeneous cells, either explicitly defined (BRep, parametric curves, wireframes,
point lists) or implicitly defined (implicit surfaces, FRep).

In some cases, it is easier and more useful to include cells of lower dimensions
(1 or 2) instead of a 3D cell in a model. For instance, for numerical simula-
tions, heavy calculations can not be performed directly on 3D cells, and a good
approximation of the result can be obtained while using 2D cells instead, i.e.
2D surfaces embedded in a 3D space. Similarly, 1D cells can be used for some
numerical simplifications. Such cells can be defined either explicitly, or implicitly.

The definition of explicit cells is well known, and includes polygonal meshes,
parametric curves and surfaces. The definition of implicit cells is based on the
FRep model. To define a cell of dimension 2, one can use an implicit surface
patch. Such patches can be defined in various ways. We consider the use of
implicit surfaces and FRep models as a framework for modeling cells of lower
dimension using a trimming technique [38,39,50].
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Fig. 2. An electric cable with a metallic wire. The geometry is defined as a cylinder.
Constructive trees to determine the location of each material, corresponding to the
indices A1 to A5 are shown respectively in (a) to (d). Each material is mapped to a
grey color. The heterogeneous object is shown in (e), with a cut according to a quadrant
(left), and a top view (right).

5.1 Trimmed Surfaces

Trimmed surfaces are now used as a standard tool for modeling complex objects
in various areas such as computer animation [13] or CAD modeling. Several
software systems (Maya, Lightwave, Catia) have specific tools to define and to
render trimmed surfaces.

The most popular technique to define a trimmed surface is to introduce a base
parametric surface and to specify the trimming area by a closed parametric curve.
The orientation of the trimming curve determines its inner and outer parts. The
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trimming techniques using NURBS and other parametric objects usually require
a re-parameterization step in order to obtain a correct visual result [24].

Although the trimming technique based on parametric curves is very popular,
it has some severe limitations. For instance, the trimming curve cannot self-
intersect, and the trimming area is a simple hole. It means that for every hole
one wants to model, he/she needs to define the corresponding trimming curve
on the surface. This may be a costly operation and requires tedious work.

Furthermore, it is well known that set-theoretic operations on BRep models
and on parametric surfaces suffer from the lack of robustness, and unwanted holes
and cracks often appear when performing trimming operations. An alternative
way to define a trimmed surface is to use a trimming solid instead of a trimming
curve. In this case, the trimmed surface is defined as an intersection (difference)
of the surface with the trimming solid. The trimming solid can be defined using
the FRep model by a real valued function. The idea of using a trimming solid
was proposed in [45], then applied and extended in [38,39,50].

Hereafter, we give a description of the mathematical formulation of a trimmed
implicit object followed by illustrative examples. By the term trimmed implicit
objects, we denote trimmed implicit surfaces and trimmed implicit curves.

5.2 Trimmed Implicit Objects Definition

In FRep, any object is defined by the inequality f ≥ 0. To include a surface in
the FRep model, we can define it as F ≥ 0, where F = −f2 takes zero value on
the surface only and negative values at all other points of space.

A trimmed implicit surface is defined as the intersection of a carrier surface,
Fc, and a trimming solid ft. The carrier surface is defined as Fc = −f2

c , where
fc is a standard FRep object (sphere, convolution surface, or any complex con-
structive object). The trimmed surface is then functionally defined as F = Fc&ft

or
F = −f2

c &ft (2)

where & stands for the set-theoretic intersection operation, and can be defined
either using the min function, or any other R-functions corresponding to the
intersection operation [47,36].

A trimmed implicit surface is defined as an intersection of a surface with a
solid. In a similar way, one can define a trimmed curve as the intersection of two
surfaces. Such a curve can be functionally defined as F = Fc&Ft or

F = −f2
c &(−f2

t ) (3)

where ft is a defining function of the trimming solid and Ft = −f2
t is the FRep

definition of its surface. The resulting trimmed surface or curve properties can
be derived from the underlying FRep model. For instance, a normal vector of
the trimmed surface and of the trimmed curve is defined as a gradient of the
carrier surface.
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                       (a)                                                (b)                                              (e)

                       (c)                                                (d)                                              (f)

Fig. 3. Concept of trimming implicit surfaces. (a) and (c): Carrier surface (transparent)
and trimming object (opaque) in different relative positions. (b) and (d): Trimming the
surface. (e) and (f): Trimmed curve.

5.3 Case Study: Trimmed Implicit Objects

In the following, we provide examples of trimmed implicit objects to illustrate
the mathematical definition given in the previous subsection.

Trimmed implicit surface. Let us consider an example of a trimmed implicit
object shown in Fig. 3. In this example, the carrier surface is a sphere described
using a defining function for a solid ball to illustrate the general approach:

⎧
⎨

⎩

fball(x, y, z) = R2 − x2 − y2 − z2

Fsphere(x, y, z) = −f2
ball(x, y, z)

Gsphere(x, y, z) = {(x, y, z)/Fsphere(x, y, z) ≥ 0}
(4)

where R is radius of the sphere. The point set Gsphere is the set of points that
belong only to the sphere surface shown in Fig. 3a. The trimming solid, shown
in Fig. 3a (fully opaque), is defined using a real valued function as an ellipsoid
combined with a sine function with an amplitude α as follows:

{
fell(x, y, z) = 1 −

(
x
a

)2 −
(

y
b

)2 −
(

z
c

)2 + αsin(x)
Gell(x, y, z) = {(x, y, z)/fell(x, y, z) ≥ 0} (5)

The trimmed surface is then a point set Gtrim defined as the intersection of
the point sets Gsphere and Gell:

Gtrim = {(x, y, z)/Fsphere ≥ 0, fell ≥ 0} (6)
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which can be expressed equivalently in a functional form Ftrim = Fsphere&fell,
where Ftrim is a defining function of the trimmed implicit surface:

Ftrim = −f2
ball&fell (7)

where & is an R-function for intersection. The result of the trimming operation
is shown in Fig. 3b. With this definition, nothing prevents one from model a
trimmed implicit surface with disjoint components. Figure 3c shows the carrier
surface and the trimming solid in different relative positions, and Fig. 3d shows
a trimmed surface composed of several disjoint parts. To obtain this surface, the
amplitude of the sine function has been increased, and the center of the ellipsoid
is placed at the center of the sphere.

Trimmed implicit curve. Hereafter, we give an example of curve segments
obtained by trimming an implicit surface using another implicit surface. This
example follows the previous one, where a trimmed implicit surface was defined.
The carrier surface is still a sphere defined by Fsphere. To obtain a trimmed curve
instead of the trimmed surface, the ellipsoid is replaced by its corresponding
surface, and the trimming point set Gell is then defined as follows:

{
Fell = −f2

ell(x, y, z)
Gell(x, y, z) = {(x, y, z)/Fell(x, y, z) ≥ 0} (8)

The trimmed curve is defined in a similar way: a point set Gtrim is defined as
the intersection between objects Gsphere and Gell:

Gtrim = {(x, y, z)/Fsphere ≥ 0, Fell ≥ 0} (9)

and is described in the functional form as Ftrim = Fsphere&Fell or

Ftrim = (−f2
sphere)&(−f2

ell) (10)

The result of the trimming operation is shown in Fig. 3e, and Fig. 3f shows
trimmed curves with disconnected components when the amplitude of the sine
function is increased and the center of ellipsoid coincides with the center of the
sphere.

As one could notice, there are practical issues with rendering trimmed implicit
objects using the above definitions, because the defining function does not change
its sign at the object points as it happens with traditional implicits. The details
of the polygonization and ray-tracing algorithms for trimmed implicit objects
can be found in [39,50].

Modeling a hubcap using FRep and trimmed implicit objects. In this
example, we model an object typical for CAD applications. We chose to model
a hubcap, as it is an object that has been used in several other works on trim-
ming (see [27], for example). When considering CAD applications in general, it
appears that for a given object, one needs to perform different calculations, mea-
surements, numerical simulations and other evaluations for the model. One im-
portant problem is that for a given type of calculations, one representation of the



104 B. Schmitt et al.

object is preferable to another. For instance, for calculations linked to internal
material distribution, the CAD object should be defined using a mathematical
model that can handle heterogeneous objects. Similarly, for heavy numerical cal-
culations, such as pressure measurement or heat transfer, a surface-based model
is preferable (as a simplification of the solid object).

In this sense, the use of the cellular-functional model is justified. We propose
a dual representation of the hubcap in this example. In Fig. 4a, we define a
hubcap using an FRep solid model, without any holes. The constructive tree
of this solid is composed of two tori, a cylindrical shell and a block object,
deformed by non-linear space mapping (the cap of the hubcap). To create holes,
we used five convolution triangles and five cylinders. In the FRep model, holes
are obtained by subtracting these primitives from the base object using set-
theoretic intersections. The result is shown in Fig. 4b. In Fig. 4c, the cap of the
hubcap is modeled using a trimming operation. To define the carrier surface, we
used its FRep model.

The only modeling task was to add a few primitives to the constructive tree of
the trimming solid in order to obtain the desired trimmed surface. In Figs. 4(d,e),
we show different rendering of the trimmed surface, a ray-traced image and a
polygonal model respectively. The trimmed curves for this object are shown in
Fig. 4f. Note that to render Figs. 4(a,b,c), we used a high quality ray tracing
software, PovRay [41]. In order to render the trimmed surface shown in Fig.
4c using this tool, we first polygonalized this surface and exported the triangle
mesh into PovRay meshing format. Details of the rendering algorithms can be
found in [50,39].

6 Implementation

6.1 Language for Constructive Hypervolume Modeling

HyperFun [42] has been developed as a high-level specialized language for the pa-
rameterized description of functionally based multidimensional geometric mod-
els. While being minimalist and suitable for easy mastering, it supports all main
notions of FRep. The current version of the language that is publicly available
[42] only allows for the description of geometry. Here, we describe a new version
that allows us deal with the constructive hypervolume model of any degree of
generality.

A model in the HyperFun language can contain the specification of several
hypervolume objects parameterized by input arrays of point coordinates xi and
numerical parameters ai whose values are to be passed from outside the object.
Each object is defined by a function describing its geometry accompanied, if
necessary, by a set of scalar functions si representing its attributes. Note the fol-
lowing feature that allows for increasing flexibility while dealing with attributes:
values of scalar functions si not only can be defined and calculated within the
HyperFun object definition but can be passed from the outside the object to be
utilized or modified within the program describing the object.
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(a)                                                    (b)                                                    (c) 

                
(d)                                                    (e)                                                    (f) 

Fig. 4. Modeling a hubcap using FRep and a trimmed implicit surface: (a) carrier
object; (b) FRep solid object; (c) Frep solid and trimmed implicit surface (cap of the
hubcap); (d) ray traced trimmed implicit surface; (e) polygonalized trimmed implicit
surface; (f) trimmed implicit curve

The functions defined in HyperFun are actually symbolic embodiments of
the corresponding trees whose structure reflects constructive logic of building
both the object’s geometry and its attributes. Not only primitives (that can
be library functions and local variables defined by algebraic expressions with
an appropriate semantics), but other objects can also be the leaves of the tree.
At the language level, this means that references to objects that have already
been specified can be present in functional expressions. The functions describing
geometry and attributes can be built in a step by step manner using assignment
statements with introducing local variables and arrays. Conditional selection (’if-
then-else’) and iterative (’while-loop’) structures are also available. Functional
expressions are built using conventional arithmetic and relational operators by
utilizing standard mathematical functions (’exp’, ’log’, ’sqrt’, ’sin’, ’cos’, etc.).
The distinctive feature of HyperFun is the support of fundamental set-theoretic
operations by special built-in operators with the reserved symbols (’|’ - union,
’&’ - intersection, ’\’ - subtraction, ’∼’ - negation, ’@’ - Cartesian product).

In principle, the language is self-contained and allows users to build objects
from scratch, without using any pre-defined primitives. However, its expressive
power is increased by the availability of the system ”FRep library” that is easily
extendable and can be adapted to a particular application domain and can even
be customized for needs of a particular user. The current FRep library version
in general use contains the most common primitives and transformations of a
quite broad spectrum.

Thus, there are functions implementing conventional CSG primitives (block,
sphere, cylinder, cone, torus) as well as their more general counterparts (ellipsoid,
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superellipsoid, elliptic cylinder, elliptic cone). Another group of the library prim-
itives implements popular implicits: blobby object [7], soft object[57], metaballs
[32]), and convolution objects [29] with skeletons of different types (points, line
segments, arcs, triangles, curve, and mesh). Primitives derived from parametric
functions (cubic spline [52] and Bézier objects [51]) have also been included into
the library. As to the transformations, one can mention rotation, scaling, trans-
lation, twisting, stretching, tapering, blending union/intersection as well as some
more general operations such as non-linear space mapping driven by arbitrary
control points.

Taking into account that texturing often requires non-trivial mathematical
skills and specialist knowledge (e.g., in color theory), some useful library func-
tions have been developed. These functions allow for creating different texture
patterns, such as using Gardner solid noise, wave-like (based on trigonomet-
ric functions), checkerboard-like, periodic concentric circles, etc. An important
group of library functions deals with color attributes implementing a number
of modes for color union and blending. Details of available set of functions for
texturing can be found in the following sections.

6.2 HyperFun Software Tools

Application software deals with HyperFun models through using either a built-
in interpreter or HyperFun-to-C/HyperFun-to-Java compilers and utilities of
the HyperFun API. The latter way concerned with intermediate generation of
C/Java code ensures more efficient function evaluation but is much more de-
manding for developers of application software in a multi-platform environment.
All case studies presented in this paper have been developed with a help of
software tools with a built-in interpreter.

The HyperFun interpreter has been implemented as a small set of functions
in ANCI-C. It is quite easy to integrate them into the application software since
the developer needs to deal with only two C-functions. ’Parse’ function performs
syntax analysis in accordance with the language grammar and semantic rules.
For each object described in the HyperFun program, the function generates an
internal representation that is actually a collection of the tree structures opti-
mized for subsequent efficient evaluation. If there are any errors in the program,
the function outputs a list containing the location and details of each error found.

Another interpreter function (’Calc’) is called every time when there is a need
to evaluate the defining function and attributes at a given point in the modeling
space and for the given external numerical parameters. Externally defined values
for attribute scalar functions can be passed too. The object’s internal representa-
tion serves as an input parameter for ’Calc’ function that returns both the value
of the ”geometric” function and a set of values for ”attribute” scalar functions -
all evaluated at the given point.

The formal specification of the internal representation and of the function
evaluation procedure was given in [37,33]. Note, that the function ’Parse’ is
invoked just once while processing the HyperFun program; in a way, the internal
representation can be treated as ”byte-code” and can serve as a protocol for data
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exchange between system components In fact, these two procedures constitute
an application programming interface (API) that is quite simple to utilize.

Software tools for HyperFun creation and processing are being developed in
an open source project manner by the international team of developers. Some of
them are currently available for free download at the Web site [42]: HyperFun
Polygonizer for the surface mesh generation with VRML/STL output, Hyper-
Fun plug-in to POVRay [41], which makes it possible to generate high quality
photorealistic images on an ordinary PC; HyperFun Java applet executable in a
Web browser [9]. The latest release of the HyperFun Polygonalizer also includes
options to generate trimmed implicit objects, based on the rendering algorithms
proposed in [50,39].

Conceptually, we strive to separate the modeling in multidimensional space
with abstract coordinate variables x1, . . . , xn from the subsequent interpreta-
tion of the model in ”real world” terms (that can be, in particular, a visualiza-
tion). The concept of multimedia types [3] is exploited here. A special mapping
with giving each coordinate an interpretation has been established by default.
For instance, ’x’, ’y’, ’z’ types can correspond to Cartesian coordinates; ’t’ -
to ”dynamic” coordinate representing continuous values that can be linearly
or non-linearly mapped onto physical time; ’u’ and ’v’ - to 2D ”spreadsheet”
coordinates, etc. -more details on the ”spreadsheet” concept and modeling in
multidimensional space can be found in [35].

HyperFun tools have special features allowing users to implement this map-
ping procedure. With introducing a set of scalar functions for representing object
attributes, one can propose a similar methodology. This means that within a Hy-
perFun program, the object’s attributes are considered as abstract real-valued
functions; as to their actual meaning, it can be determined later - by an appro-
priate application program. Such a technology allows us to introduce ”generic”
objects with subsequent generation of their different instances. For example, the
same attribute can be treated (without any change in HyperFun program) as
color, or as transparency, or as density, or as temperature, depending on circum-
stances and available application software features. Moreover, it is possible to
assign simultaneously a few multimedia types to the same attribute. However,
if the user considers it appropriate, it is possible to fix the attribute’s meaning
as early as on the modeling stage (this is the case for this paper’s examples).

6.3 The Hyperfun Library Functions for Texturing

One direct application of the constructive hypervolume model is related to tex-
turing. As a matter of fact, abstract attributes of the model are either de-
fined directly as photometric or texturing attributes at each point in space,
or are mapped afterwards to photometric attributes for visualization purposes.
This mapping, and more generally the definition of such attributes, is called
constructive texturing. More details and study of this technique can be found
in [49].

To help the user, a set of predefined library functions is available in Hyper-
Fun. Taking into account that texturing often requires non-trivial mathematical
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Table 1. Examples of utility functions in the HyperFun library for attributes

Function Name Parameters Short Description

hfA Floor af Input Value Returns the integer part of a

hfA NoiseG
aa3 Point Coordinates
bf Phase
cf Frequency

Returns Gardner’s solid noise

hfA Turbulence
aa3 Point Coordinates
bf Frequency Returns Perlin’s turbulence func-

tion

skills and specialist knowledge (e.g., in color theory), we have been developing the
library functions that can facilitate creating constructive hypervolume texturing
models. There are three main groups of useful functions. The first group includes
functions that are applicable to different attributes irrespective of their specifics.
Such functions include noise functions, sinusoidal functions, and linear interpo-
lation. Some other service functions are also provided, such as conversion from
one color space to another (RGB to HSV for instance). The table 1 provides
more detailed examples of available functions. In this table, a function name is
given first, then parameters and a short description of this function. Parameters
of the function are alphabetically ordered, and the subscript indicates if this
parameter, a for instance, if either a single float value af or an array of floating
values aan of size n. The prefix hfA indicates that the function is related to
Attributes.

The second group includes more specialized functions, where different at-
tribute patterns can be defined, such as concentric circles or a brick wall pattern.
Three functions are given in the table 2, and a complete list and detailed usage
of these functions are available on the HyperFun website. A usage example of
one of the functions, hfA Crackles, can be found in the next section, where the
HyperFun code for a heterogeneous object is given. Parameters of this function
are point coordinates aa3 , resulting array of attributes ban , float value controlling
the noise behavior of the output pattern, and two arrays defining respectively a
set of attributes ean corresponding to a set of intervals dan . The resulting color
pattern is computed as follows. Given an input point coordinate, a noise func-
tion is evaluated; then the obtained value is used to determine which interval it
belongs to, and the corresponding set of attributes is then returned.

The last group of functions for texturing represents basic operations such as
set-theoretic and others. In general, these operations transfer an input array of
attribute values to an output array according to the function value. The table 3
gives an outline of some available functions.
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Table 2. Examples of specialized attribute library functions in HyperFun

Function Name Parameters Short Description

hfA CheckerBoard

aa3 Point Coordinates
ba3 Brick Size
ca3 Mortar Size
dan Output attribute array
ean Attribute array for blocks
fan Attribute array for the mortar

Defines a wall pattern including
blocks (bricks) and in-between in-
tervals (mortar). If the input point
coordinate belongs to a block,
the attributes corresponding to
the block are returned, otherwise
the attributes corresponding to the
mortar are returned.

hfA LookUpMap

af Input value
ban Output attribute array
can Mapping array
dan Array of attribute arrays

Returns the attributes correspond-
ing to the interval af belongs to.
The mapping array is a set of floats
defining intervals, each interval cor-
responding to a set of attributes de-
fined by the parameter dan .

hfA Crackles

aa3 Point Coordinates
ban Output attribute array
cf Frequency
dan Mapping array
ean Array attribute array

Defines a crackle pattern. A noise
value is computed using the point
coordinates. This value is then used
in a similar way as in the func-
tion hfA LookUpMap: dan defines
a set of intervals, ean defines a set
of attributes for each interval, and
the noise value is used to determine
which interval to consider for the
current noise value.

Table 3. Examples of attribute library functions related to set-theoretic operations

Function Name Parameters Short Description

hfA SetAttributes
af Input Value
ban Output attribute array
can Input attribute array

If and only if the input value is pos-
itive, the input attribute array is
copied to the output attribute ar-
ray

hfA Union

af Function value f1

bf Function value f2

can Output attribute array
dan Input attribute array (f1)
ean Input attribute array (f2)
ff Union operation for attributes

Returns the R-function value for
the set-theoretic union f1|f2. De-
pending on the union operation for
attributes and the value f1 and f2,
the output array attribute is set to
different values depending on dan

and ean
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Set-theoretic operations require special attention. The built-in function
hfA Union, for instance, calculates union of attributes. The semantics of the
function is shown in table 3. The parameters f1 and f2 are two function val-
ues, and dan and ean are two arrays of attributes corresponding respectively to
objects f1 and f2. The returned value f is the value corresponding to the set-
theoretic union operation. The array can contains the output attributes. Values
of the attributes are set depending on the result of the union of f1 and f2. If
f1 is positive and f2 is negative, then can is equal to dan , and vice-versa for f2
and ean . In the case when both f1 and f2 are positive, then attribute values
contained in can are defined as a combination of dan and ean . The usage and
meaning of the union of attributes may not be straightforward and often is ap-
plication dependent. The last input parameter of the function ff is a selection
flag, which serves for the selection of different types of attribute unions. Its zero
value, for instance, gives priority to the attribute of the input function f1, the
value of 1 gives the priority to f2’s attribute, the value of 2 adds each individual
attributes, and the value of 3 takes the minimal of attribute values. Although
several predefined operations are available, nothing prevents one from writing
their own union operation in the HyperFun code. More details on union of at-
tributes can be found in [35]. The example provided in the next section uses this
function.

Note that, although the above examples use three color attributes as RGB
values, the available functions are not restricted to this size of the attribute
array and can be extended to any arbitrary size. In [49], the number of pho-
tometric attributes are equal to 12, corresponding to ambient, diffuse, specular
and shininess attributes.

6.4 Example of a Heterogeneous Object Model in HyperFun

An example of a HyperFun model of a heterogeneous object is shown in Fig.
5 and explained in this section. We consider modeling a volumetric multi-layer
geological structure. Heterogeneous objects in geo-sciences usually consist of
multiple layers of different materials with cavities, wells, and other irregularities.
We present here a simplified example of a constructive volumetric model of
such a geological object. The corresponding HyperFun code is given at the end
of this section. The basic geometric model is described by a single function
Fgeom(X) ≥ 0, where X is a vector of 3D point coordinates. In the HyperFun
code, the Fgeom is called my model:

Fgeom = Frelief&Fbbox&(−Fcavity)&Fcut (11)

Frelief defines a solid bounded by the top curvilinear surface and the bottom
plane, corresponding to tlayer5 in the HyperFun code, Fbbox is a function defin-
ing a bounding box for the model, Fcavity is a model of cavities made using
an algebraic sum between the functions of an ellipsoid and solid noise, and
Fcut serves for producing a zigzag cut of the full object. The symbol & stands
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for the R-function defining set-theoretic intersection between two functionally
defined solids, and the symbol | stands for the set-theoretic union. Note that
an R-function defining set-theoretic difference between two function A and B
can be defined as A&(−B). In HyperFun, the set-theoretic difference is directly
expressed by the symbol ’\’.

For the model of the ”relief” solid, we used the following expression:

Frelief = (frelief (x, y) − z)&z (12)

where z = frelief (x, y) defines the top curvilinear surface of the object, and
z value of the bottom plane is zero. The curvilinear surface is defined as a
combination of sin functions (note land5 in the source code).

The five material layers shown in Fig. 5 using different grey scales are pre-
sented in the attribute model by the space partition different from the basic
geometric model. For the i-th layer, the defining function is

Fi = (fi+1(x, y) − z)&(−fi(x, y) + z) (13)

where i = 1 . . . 4, f5 = frelief , and z = fi(x, y) defines the top surface of the
layer. In the simplest case of the homogeneous material distribution inside the
layer, the single material attribute can be defined as

A =
{

Mi Fgeom ≥ 0, Fi ≥ 0
θ Fgeom < 0 (14)

where Mi is a material index, and θ stands for the undefined value, equal to
zero in the HyperFun code example. The equation 14 is expressed in the code
example by the following block:

if(model>-0.001) then
...Calculation of the partition corresponding to each layer
...definition of attributes
endif;

For instance, when the first partition corresponding to the layer 1 is defined,
a built-in function from the HyperFun attribute library is called to set the at-
tributes corresponding to this layer (contained in the array c1). Similarly, parti-
tions and attributes for other layers are processed. The attributes corresponding
to the current point coordinate x[3] are actually set at the end of this block
while using the built-in function hfA Union. Union of the first and second par-
tition is performed, using their respective function values and attribute arrays.
The result is the returned function value corresponding to the geometric set-
theoretic union, and the output attributes are contained in the array clayer.
The result of this union operation is then successively used with other parti-
tions, and for the last union, the output array of attributes is finally copied
to the ’s’ array, which is an input/output parameter of the entire function de-
fined in this HyperFun model. The source code of the HyperFun model is given
hereafter:
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my_model(x[3], a[1],s[3]) {
--Declarations of various arrays
array xtt[3], llc[3];
array delta[3], xp[3], center[3];
array map[5], colors[12];
array clayer[3],cedges[3];
array c1[3],c2[3],c3[3],c4[3],c5[3];

map = [0.0,0.4,0.5,0.8,1.0]; s = [0.0,0.0,0.0];
clayer = [0.0,0.0,0.0]; cedges = [0.0,0.0,0.0];
c1 = [0.0,0.0,0.0]; c2 = [0.0,0.0,0.0];
c3 = [0.0,0.0,0.0]; c4 = [0.0,0.0,0.0];
c5 = [0.0,0.0,0.0];

xp[1]= -x[1]+20; xp[2]= x[2]; xp[3]= x[3];
xt = xp[1]; yt = xp[2]; zt = xp[3];

llc = [0,0,0];
bbox = hfblock(xp,llc,20,20,15);
f1 = zt;

--layer5: Top layer and geometry
land5 = 0.4*(sin(xt/1.2)+sin(yt/1.5));
f6 = 12 + land5;
tlayer5 = (f6-zt)&f1;

-- cut of the geometry to visualize inside the
--geological model
fc1 = yt-2;
fc2 = (yt-2)-(xt-5);
fc3 = yt-8;
cut = (fc1 & fc2) | fc3;

--cavity
tmp = hfNoiseG(x,1,1,1);
center = [7,5,3.5];
cavity = hfEllipsoid(xp,center,6,3,2)+tmp;

-Final geometrical model
model = ((tlayer5) \ cavity) & bbox & cut;

if(model>-0.001) then
------layer1-----------------------------------------------------

--Partition
land1=0.4*(sin(xt/2)+sin(yt/3));
f2 = 3 + land1;
tlayer1 = (f2-zt)&zt;
layer1 = tlayer1;
--Attributes
colors=[0.0,0.8,0.6, 0.1,0.8,0.4, 0.2,0.9,0.4,0.0,0.8,0.6];
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tmp = hfA_Crackles(xp,c1,0.5,colors,map);
------layer2-----------------------------------------------------

--Partition
land2 = 0.4*(sin(xt/1.9)+sin(yt/2.5));
f3 = 5 + land2;
tlayer2 = (f3-zt)&zt;
layer2 = tlayer2\layer1;
--Attributes
tmp = hfA_NoiseG(xp,4.0,4.0);
c2[1] = 0.2+tmp;
c2[2] = 0.4;

------layer3-----------------------------------------------------
--Partition
land3 = 0.4*(sin(xt/1.7)+sin(yt/2.2));
f4 = 7 + land3;
tlayer3 = (f4-zt)&zt;
layer3 = tlayer3\tlayer2;
--Attributes
colors=[0.2,1.0,0.4, 0.4,0.9,0.4, 0.2,0.9,0.2, 0.4,0.9,0.4];
tmp = hfA_Crackles(xp,c3,0.1,colors,map);

------layer4-----------------------------------------------------
--Partition
land4 = 0.4*(sin(xt/1.4)+sin(yt/1.8));
f5 = 9 + land4;
tlayer4 = (f5-zt)&zt;
layer4 = tlayer4\tlayer3;
--Attributes
tmp = hfA_NoiseG(xp,1.0,1.0);
c4[2] = 0.4;
c4[1] = (1.0+sin(tmp*10*xp[1]) )/2.0;
c4[3]= 0.1;

------layer5-----------------------------------------------------
--Partition
layer5 = tlayer5\tlayer4;
--Attributes
tmp = hfA_NoiseG(xp,5.0,5.0);
c5[1] = 1.0-0.7*tmp;
c5[2] = 1.0-0.7*tmp;
c5[3] = 0.2;

--Final Union of attribute of each layer---------------------------
--to determine the current attribute for the current input
--point coordinate

tmp = hfA_union(layer1,layer2,clayer,c1,c2,0);
tmp = hfA_union(tmp,layer3,clayer,clayer,c3,0);
tmp = hfA_union(tmp,layer4,clayer,clayer,c4,0);
layers = hfA_union(tmp,layer5,s,clayer,c5,0);

endif;
my_model = model;
}
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Fig. 5. Volumetric multi-layer geological structure modeled using HyperFun

7 Conclusion

In this survey paper, we presented the development of the function-based models
suitable for heterogeneous objects modeling. The function representation was the
foundation for this development providing constructive multidimensional models
defined by real functions. The constructive hypervolume framework allowed for
adding pointwise attributes modelled in a similar way as object geometry. At-
tributes represent different properties of real or abstract objects defined at each
point of the object. The function representation (FRep) is used as the basic
model for point set geometry, and attributes are modelled independently using
real-valued scalar functions of several variables. Geometry and attributes are
modelled constructively in a step-by-step manner. This is reflected in the un-
derlying representation in the form of the constructive trees. Each real function
defining geometry or an attribute is evaluated at the given point by a procedure
traversing the corresponding constructive tree data structure.

Straighforward application of the proposed constructive hypervolume model
is modeling solid objects with internal material distribution. We aslo presented
lower dimensional entities such as surfaces and curves. The proposed means for
defining such cells relies on the usage of a trimming operation, where surfaces
are defined as the intersection of a carrier surface functionally defined with a
carrier solid and curves defined as the intersection of two functionally defined
surfaces.

Solids, surfaces and curves defined using the constructive hypervolume model
can serve as elementary cells in the theoretical framework related to the implicit
complexes also presented in this volme. Each entity is dimensionally homoge-
neous and defines a point set with multiple attributes. In the implicit complex
model, a unified framework is proposed to combine cells of different dimen-
sions, as well as cells defined by other means, resuling in a specific cellular
complex.
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Abstract. Distribution of material density and other properties of het-
erogeneous objects can be parametrized by the Euclidean distance func-
tion from the object boundary or from special material features. For
objects constructed using geometric primitives and set-theoretic opera-
tions, an approximation of the distance function can be obtained in a
constructive manner by applying special compositing operations to the
distance functions of primitives. We describe such operations based on
a smooth approximation of min/max functions and prove their C1 con-
tinuity. These operations on distance functions are called SARDF oper-
ations for Signed Approximate Distance Functions. We illustrate their
applications by 2D and 3D objects models with heterogeneous material
distribution.

1 Introduction

Modeling spatial objects, their properties and relations, has important appli-
cations in various engineering fields. Spatial objects refer here to curves and
surfaces as well as to three-dimensional volumetric objects with heterogeneous
internal properties (such as material, color, density, and others). Fields of ap-
plications of modeling and visualization of volumetric objects include: medicine,
scientific visualization, physical analysis and simulation, mechanical engineering,
and others. Several mathematical models have been developed to construct such
volumetric objects; all of them have strengths and weaknesses depending on the
field of application. The use of distance-based scalar fields is one of the possible
methods for naturally defining the geometry of these objects and their internal
properties.

The signed Euclidean distance function defines a solid by giving at each point
in space the shortest distance between the current point and any point belonging
to the surface of the solid. The sign is used to distinguish between object interior
and exterior. Starting from expressions of the Euclidean distance for primitive
objects (plane, sphere, torus), it is possible to construct more complex objects
by applying set-theoretic operations (union, intersection, difference) to them. In
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the theory of R-functions [22], these set-theoretic operations are expressed by
real-valued functions, and applying them to primitives gives a functional expres-
sion for the final function defining the complex object. Constructive modeling is
an elegant way to represent volumetric objects using a tree data structure with
operations in the nodes and primitives in the leaves. The tree, called a construc-
tive tree, keeps information about the structure, construction operations and
semantics of the objects.

Distance-based scalar fields present the advantage to naturally define a vol-
ume and to simplify the modeling task. The Euclidean distance gives additional
advantages such as a physical meaning which provides a natural parameter to
define constraints in modeling point sets and their attributes. In constructive
modeling, the R-functions do not provide a good Euclidean distance approxi-
mation for the resulting function, whereas min/max (another type of functional
expressions for the set-theoretic operations) keep a better approximation but
add points of C1 discontinuity for the resulting function, which impacts some
modeling operations and applications. We present in the following, functional ex-
pressions for the set-theoretic operations that keep a reasonable approximation
of the Euclidean distance but also provide smoothness for the resulting func-
tion, a useful property for many applications. We call such functions SARDF for
Signed Approximate Real Distance Functions.

In this paper, we present our work on volumetric modeling with the following
objectives:

– The definition of new functional expressions for the set-theoretic operations
intersection, union, and difference, which provide good approximation of the
Euclidean distance and smoothness of the resulting function.

– The introduction of a constructive distance-based modeling framework for
volumetric objects based on the introduced set-theoretic operations, and
other operations and primitives defined by an approximation of the Euclid-
ean distance function.

– Using this constructive framework to allow parameterization and control of
object attributes by the distance.

2 Previous Works

The Euclidean distance from a point p to a set S is the minimum distance,
using the Euclidean norm, between p and any point of S. The signed Euclidean
distance function is a concise and powerful way of describing object geometry. We
discuss here the existing methods used to construct Euclidean distance functions
to define volumetric objects.

Constructive modeling allows to create models of complex solids by combin-
ing together simple solids with operations. It can be implemented using the
theory of R-functions [20,22,26,16] or min/max functions [24,18]. We review the
existing methods and algorithms for constructive modeling volumetric objects
with a focus on the quality of approximation of the Euclidean distance and the
smoothness of the resulting function.
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The Signed Euclidean Distance Function. The signed Euclidean distance
function from a point p ∈ R

n to a (n−1) closed orientable manifold M , embedded
in R

n, is defined by: d : R
n → R, d(p) = ε|p − c|, where ε is ±1 corresponding

to the orientation of M , c is the closest point on M to p, and |.| denotes the
Euclidean norm. Two conventions exist for the sign of the distance: the outward
normal can point in the positive direction or in the negative direction. In this
paper, we adopt the convention that the outward normal points in the direction of
the negative values of the distance function. In the Euclidean three-dimensional
space R

3, the signed Euclidean distance function to a closed oriented surface M
naturally defines a solid by: {(x, y, z) ∈ R

3 : d((x, y, z), M) ≥ 0}.
Euclidean distance fields have numerous applications in geometric modeling

[8], shape metamorphosis [5], object reconstruction from cross-sections [13], ro-
bust rendering with sphere tracing [9], generation of skeletal shape representation
[32], and other areas.

Computation of the Distance Function. Let d(p), p ∈ R
3 be the signed

distance function to an oriented closed surface M . The function d is the viscosity
solution of the Eikonal equation [31,30,25]:

|∇d| = 1, d|M = 0 (1)

d corresponds to the time arrival of a wave propagating from the surface bound-
ary, with a speed of unit magnitude. Let c be the closest point to p on the surface
M , the distance is then |p − c|, with a negative sign if p is outside M . If the
surface is smooth, then p− c is orthogonal to the surface. The signed Euclidean
distance function is at least C0, but may be not differentiable at some points.

Expressions for the distance function to most of the classic surfaces of a CSG
system (sphere, cylinder, cone) are known analytically [9]. For example, the
signed distance to a sphere (boundary of a ball) of radius 1 and center at the
point (0, 0, 0) is given by the function: d(x, y, z) = 1−

√
x2 + y2 + z2. The signed

distance to ellipsoids can be computed by a numerical procedure [10].
In general, if the surface M is available as an oriented point-set or a mesh

of triangles, it is possible to solve the Eikonal equation (Eq. 1) on a finite grid.
Examples of numerical algorithms to solve that problem are: the fast marching
method [25], the fast sweeping method [30,31], or the characteristics / scan con-
version algorithm [14]. Algorithms, that exploit the GPU (Graphics Processing
Unit), have also been designed in order to compute efficiently the Euclidean dis-
tance function [11,29]. After the signed Euclidean distance has been computed
on each grid nodes, it is possible to apply spline interpolation to get an analyti-
cal expression – see for example [19] for the interpolation of volume data. These
methods may suffer from numerical issues and a loss of accuracy depending on
factors such as the choice of the basis, the sampling of the discrete distance field,
or the quality of the input data.

Constructive Geometry with Distance Functions. In constructive geom-
etry, complex solids are built by applying successively set-theoretic operations
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to primitives. When the primitives have the distance function property, we want
that the resulting function for the complex solid, obtained by applying the set-
theoretic operations to primitives, is again the distance function or at least its
good approximation. We study in the following different implementations of the
set operations: min/max and the R-functions R0 in terms of distance approxi-
mation and smoothness.

In the following, d1 and d2 are two distance functions to two (n−1)-manifolds
M1 and M2; practically, n = 2 or n = 3, so M1 and M2 are curves or surfaces,
and d1 and d2 naturally define surfaces or solids, denoted by S1 and S2. The
results remain valid in any dimension n.

Functions Min/Max. Sabin [24] and Ricci [18], independently proposed the
use of the min/max functions to describe set-theoretic operations on on solids
with implicit surfaces. Using min/max, the set-theoretic operations are given by:

S1 ∪ S2 : d1 ∨ d2 = max(d1, d2) (2)

S1 ∩ S2 : d1 ∧ d2 = min(d1, d2) (3)

S1 \ S2 : d1 ∧ −d2 (4)

The function built by applying min or max to two distance functions d1 and
d2 is 0 on the surface defined by the corresponding set-theoretic operation ap-
plied on the solids S1 and S2. If the gradient is defined, its norm is equal to 1;
so that both of the properties of Eq. 1 hold. However, it does not correspond
exactly to the Euclidean distance function, as it can be seen in Fig. 1, with the
distance to a square built as an intersection of four halfplanes. Contour lines of
the distance function constructed analytically by applying the min function for
the intersection and the Euclidean distance to the square boundary are shown
at the left and the right respectively. Exterior contour lines are in light grey,
interior contour lines in dark grey, and the square shape is in black. The exterior
contour lines for the Euclidean distance function, in light grey, are different, with
circular arcs centered at the vertices of the square, instead of sharp corners.

The main problem with the use of min/max in shape modeling is the smooth-
ness of these functions. The function (x, y) → min(x, y) (and respectively max)
is C0 but not differentiable at points where x = y. In the geometric space, the
resulting function will generally not be differentiable at any point p such that:
d1 is not differentiable, or d2 is not differentiable, or d1(p) = d2(p). The first
two cases are inherent to the primitives, but the latter is due to the min/max
functions.

These points can cause unexpected results in further operations on the ob-
ject such as blending, metamorphosis, and others, and problems in engineering
applications requiring non-vanishing gradients [3,4]. Figure 2 illustrates an unex-
pected result of the blending union between a sphere and a box, when min/max
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Fig. 1. Some contour lines of: the ”distance” function to a unit square defined by the
intersection, using min, of four infinite halfplanes (left), and the exact signed Euclidean
distance function to the boundary of the square (right). See the circular arc in the
exterior contour line (light grey) of the exact distance function (right), compared to
the sharp corners created by using the min function (left).

are used in the modeling to implement the set-operations. The box is defined as
an intersection of planes. The blending union [17] is defined by:

blending(d1, d2) = d1 + d2 +
√

d2
1 + d2

2 +
a0

1 + ( d1
a1

)2 + ( d2
a2

)2
(5)

The unwanted edge in the material added by the blending union comes from the
use of the min function to implement the intersections of the half-spaces in the
cube model.

In order to remove the C1 discontinuities of min/max, Rvachev proposed the
R-functions [20,21,26], also briefly discussed in the following. Ricci [18] proposed
the superelliptic approximations of min/max, which do not describe exact set-
theoretic operations and suit only for blending. The elliptic approximation of
min/max by Barthe et al [1] is designed for blending and the error of the distance
function grows infinitely far from the boundary.

R-functions. There are various kinds of R-functions, with different order of
smoothness, discussed in [20,22,26]. The most commonly used are given by:

S1 ∪ S2 : d1 ∨ d2 = d1 + d2 +
√

d2
1 + d2

2 (6)

S1 ∩ S2 : d1 ∧ d2 = d1 + d2 −
√

d2
1 + d2

2 (7)

S1 \ S2 : d1 ∧ −d2 (8)

The R-functions, (x, y) → x ∧ y and (x, y) → x ∨ y, are in C1 over R
2 \ (0, 0).

In the geometric space, the resulting function is not differentiable at all points p
such that: d1 is not differentiable, or d2 is not differentiable, or d1(p) = d2(p) = 0.
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Fig. 2. Left: illustration of the C1 discontinuity of min/max in further operations, in
this case: the blending union between a sphere and a cube. Right: nice blending effect,
when R-functions are used for set-theoretic operations during modeling.

The first two cases are inherent to the primitives and the latter is added by the
R-functions: it corresponds to the sharp corners and sharp edges of a surface.
When using R-functions to model the cube, the blending operation does not
create unwanted edges as shown in Fig. 2, right.

R-functions generate however a poor approximation of the signed distance
function. They suffer from a value growth’s explosion when, for example, apply-
ing them to overlapping solids.

Discussion. Neither min/max nor the R-functions provide at the same time
a reasonable approximation of the distance and smoothness of the resulting
function. R-functions are poor approximations of the Euclidean distance, and
min/max are not smooth enough for several applications. We should notice how-
ever that smoothness and Euclidean distance are contradictory properties, since
the distance function is by definition not everywhere differentiable (for examle,
it is not differentiable at all the points belonging to the medial axis of the solid).
But we accept to loose some accuracy in favor of smoothness.

In this paper, we introduce new smooth approximations for min/max opera-
tions inspired by the works [1,12,2]. The proposed functions are C1 continuous
and keep a controllable approximation of the distance function. We call the
constructed defining function of the object by the term Signed Approximate
Real Distance Function (SARDF), the approximate min function can be called
SARDF intersection, and the approximate max function - SARDF union.

We propose to use the proposed SARDF framework to extend the construc-
tive hypervolume model [15] for distance-based modeling. In the latter model,
both the geometry of the solid, and the shape of the definition domains for the
attributes can indeed be defined in constructive ways using SARDF primitives
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and operations. The modified constructive hypervolume model is used to answer
the question (section 5.2 of [4]) of the practical ways to compute the Euclidean
distance field and then combined with the work of [15,4] to model constructive
heterogeneous objects using signed distance fields.

3 SARDF Operations

R-functions have good properties of smoothness making them appreciated in
solid modeling, material modeling, animation, and other areas. Unfortunately,
the R-functions “destroy” quickly the distance properties of the argument func-
tions. This effect was noticed by other researchers especially in the field of mater-
ial modeling [28]. In contrary, the min/max functions keep better approximation
of the distance property for the constructive shape. However, they add singular-
ities to the constructed function in addition to the natural singularities of the
true distance function.

The problem we address is to introduce new operations on functions corre-
sponding to set-theoretic operations on solids such that these new operations
have the following properties:

– they have better differential properties than min/max;
– they are a better approximation of the distance function than the R-functions

and at least as good as min/max;

Some recent works proposed to modify the contour lines of the min and max
functions in order to create some blending effects [12,1]. The same techniques can
be used to construct some smooth versions of min/max: the sharp corners of the
contour lines can be replaced by symmetric circular arcs, except the sharp corner
passing through the origin, the radius of the circular arcs is either growing or
bounded by two control lines, to better approximate the distance function. These
smooth approximations of min/max functions are called SARDF operations, an
abbreviation for Signed Approximate Real Distance Function.

We first introduce the construction of the approximate min function with a
circular arc replacing a sharp corner of the contour line. Then we describe the
formulation of SARDF operations as proposed in [7]. The constructions and
properties of the introduced functions are similar for the intersection and union
as these operations present symmetries: intersection(x, y) = −union(−x, −y).
We give constructions and properties only for the intersection. The difference is
obtained from the intersection by the operation f1 ∧ (−f2).

3.1 Circular Min Approximation

In this section, we describe a circular approximation of the min function for
the set-theoretic operation intersection to approximate the signed real distance
function. Any contour line of the min function has a sharp corner, corresponding
to the union of two vertical and horizontal rays. This feature of the contour lines
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Fig. 3. Left: two straight lines with the angle θ between them break the first quadrant
into three zones. Center: contour line configuration: the two rays are attached to the
circular arc at the junction points P1 and P2. Right: unknowns of the Eq. 9 and their
geometric relations.

reflects the discontinuity of the partial derivatives of the min function that occurs
at any point when the two arguments are equal.

Following the general approach of [1,12], we propose to replace the sharp
corner in any contour line, except the contour line passing through the origin,
with a circular arc. All operations are discussed for two halfspaces f1 = x, f1 ≥ 0
and f2 = y, f2 ≥ 0. We consider two straight lines, symmetric with respect to
the line defined by y = x and with an angle θ between these lines, which act as
a frontier for the circular arcs. Applying these operations to arbitrary distance
functions f1 and f2 consists in syntactically replacing x by f1 and y by f2.

The Euclidean plane is divided into four quadrants; the first quadrant cor-
responds to x > 0 and y > 0, the second quadrant to x < 0 and y > 0, the
third quadrant to x < 0 and y < 0, and finally the fourth quadrant to x > 0
and y < 0. In the second and fourth quadrants, the approximate function for
min is equal exactly to min; thus we restrict the discussion to the first and third
quadrants, where the sharp corners need to be smoothed.

Circular Min Approximation: Quadrant I. We discuss here the circular
approximation of the function F (x, y) = min(x, y) in the first quadrant, where
x > 0 and y > 0. We want to replace any contour lines F = d with a circular arc
and two rays tangentially attached to it as shown in Fig. 3 center. The angle θ
made by two straight lines L1 and L2 is introduced as in Fig. 3.

These two straight lines L1 and L2 break this first quadrant into three zones:
A (below L1), B (between L1 and L2) and C (above L2), as shown in Fig. 3
(left).

The attachment points P1 and P2 of the arc and the rays are placed on
the lines L1 and L2 correspondingly. Figure 3 (center) shows such a contour
line configuration. We are interested in the contour lines F̃ = d of the smooth
approximation F̃ of the min function. Given an arbitrary point P = (x, y), we
need to calculate a function value d for it.
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In zone A, F̃ is equal to min(x, y), therefore the contour is a horizontal line
going through the point P and defined as F̃ = y. In zone C, F̃ is also equal to
min(x, y), so the contour is a vertical line going through the point P and defined
as F̃ = x.

Finally, in zone B, we want to have a circular arc passing through the point
P = (x, y). This arc should go through the point P and change into the horizontal
ray in zone A and into the vertical ray in zone C. Both of these rays are at the
distance d from the corresponding x and y axes. Such a distance is used for the
definition of the value of the function. In order to calculate this distance d, we
start from the equation of the circle passing through P:

(x − x0)2 + (y − y0)2 = R2 (9)

In this equation, x0, y0 and R are unknown but can be expressed in terms of
the value d being searched, and α, the angle between the straight lines and the
axes. Figure 3 (right) shows the unknowns and their geometric relations.

First, α is expressed using θ (a parameter left to the user, expressing the angle
between L1 and L2): α = ( π

2 −θ)
2 . Then, from the lower triangle in zone A (Fig. 3

right), x0 = d tan(α). By analogy, from the upper triangle in zone C (Fig. 3
right), y0 = d tan(α), and R = x0 − d. By replacing these variables in Eq. 9, we
obtain the following quadratic equation for the variable d:

d2 [cotan2(α) + 2 cotan(α) − 1] − 2 d (x + y) cotan(α) + x2 + y2 = 0 (10)

The solution of Eq. 10 for the unknown d is:

d =

{
−b±

√
(b2−4ac)
2a if a �= 0 and in zone B

− c
b if a = 0 and in zone B

where a = cotan2(α) + 2 cotan(α) − 1, b = −2 (x + y) cotan(α) and c = x2 + y2

are the coefficients of Eq. 10.
The final expression for the value of F̃ , at P in the quadrant I, is summarized

below:

F̃ (P) = d =

⎧
⎪⎪⎨

⎪⎪⎩

−b±(b2−4ac)0.5

2a if a �= 0 and P in zone B
− c

b if a = 0 and P in zone B
y if P in zone A
x if P in zone C

where a = cotan2(α) + 2 cotan(α) − 1, b = −2 (x + y) cotan(α) and c = x2 + y2,
and α is an angle between L1 and x-axis, and between L2 and y-axis.

For the approximation F̃ of the min function in the third quadrant, where
x < 0 and y < 0, the method is the same as for the first quadrant.

Problem of the Circular Approximation. The intersection for two given
shapes, defined by the signed distance functions f1 and f2 is obtained by replac-
ing x and y in the above equations by f1 and f2.
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Fig. 4. Illustration of the general idea for the construction of SARDF intersection. The
two possible approaches in the quadrant 3 are given left and right. Left, the growth of
the radius is bounded by two straight lines; right, the growth of the radius is unbounded.

The use of the described above circular approximations for the min and max
functions can provide the C1 approximation of the resulting distance function
for constructive shapes built using normalized primitives (defined by distance
functions). Unfortunately, this approach has the following problem: the radius
of the circular arc used to replace the sharp corners in the contour lines keeps
growing with the distance from the initial surfaces. Because of this behavior of
the arc radius, the error of the distance function approximation grows infinitely
with the distance. We propose to prevent the radius from growing infinitely
by introducing a fixed radius circular arc, and by switching to it, when some
threshold for the radius is reached.

3.2 SARDF Intersection Construction

The sharp corners, in quadrant 1 and 3, are replaced as above by circular arcs
with growing radius. We propose two approaches to control the growth of the
radius in quadrant 3: in the first one, the radius is bounded by two parallel
straight lines after a threshold radius is reached, whereas the radius is allowed
to grow infinitely in the other. In quadrant 1, the growth of the radius is always
bounded after some threshold. The idea behind these strategies is to mimic at
best the behaviour of the distance function. The general idea is illustrated in
Fig. 4 for the two different approaches.

Quadrant 1. In quadrant 1, the sharp corners of the intersection operation found
in every contour lines are replaced by a circular arc with growing radius. This ap-
proach is illustrated Fig. 5. Two parabola segments symmetric in respect to the line
y = x are used to delimit the circular arc approximation (Zone I,B). The growth of
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Fig. 5. The different zones of the SARDF intersection in quadrant 1

the circular arc is bounded by introducing a threshold radiusR (Zone II). A bound-
ing band is introduced by two parallel straight lines that enclose the circular arc
with fixed radius. These band lines are defined by a shift of the line y = x at R
distance in positive and negative x directions. The two branches of the parabolas
are defined to be tangent to the two parallel lines y = x − R and y = x + R at the
connecting points (R, 2R) and (2R, R) and pass through the origin (0,0), it gives
the expressions for these two parabolas: y = x2

4R and x = y2

4R . Note that the use
of parabolas to restrict the circular approximation ensures that the constructed
function is C1 on the arc of circle A1A2.

Zone I,B. Given a point (x, y) in the first quadrant, Zone I, B, we want to cal-
culate the iso-level value d for the SARDF intersection at this point. It belongs
to a circular arc that is tangentially connected to two horizontal and vertical
rays when reaching the parabola (see Fig. 5). The equation of this arc is (x −
x0)2 +(y−y0)2 = r2, where x0, y0 and r need to be expressed as functions of the
searched value d. The point at the intersection of the parabola and the iso-level
d of the searched function, is at a distance d from the axis y = 0. Because this
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point belongs also to the parabola, it satisfies d = x2
0

4R . By symmetry it comes

that: d = y2
0

4R .
The coordinates of the center of the circular arc (x0, y0) satisfy the following

equality: x0 = y0 = d + r, it follows that r = y0 − d = 2
√

Rd − d. By plugging
everything in the equation of the circle, using the substitution of variables

√
d = z

and expanding, we obtain the following algebraic equation of degree four in z:

z4 − 4
√

Rz3 − 4Rz2 + 4
√

R(x + y)z − (x2 + y2) = 0 (11)

Thus in the first quadrant, in the zone I, B, the expression of the intersection
is the square of one of the four roots of the algebraic equation 11. Roots of
algebraic equation of degree four are known algebraically. The root of interest is
found by using one of the limit conditions, for example d(2R, R) = R.

Zone II, inside the bounding band. Given a point (x, y) in zone II, within the
bounding band (see Fig. 5), we want to compute the iso-level value d of the
SARDF intersection at that point. This point belongs to a circular arc that is
tangentially connected to two horizontal and vertical rays when reaching the two
lines of the bounding band. The equation of this circular arc is: (x− x0)2 +(y −
y0)2 = R2. This time R is constant, thus only x0 and y0 need to be expressed as
functions of d.

The coordinates (x0, y0) of the circular arc satisfy: x0 = y0 = d + R. After
substitution into the equation of the circular arc and expanding this equation,
d is one of the two solutions of the following second degree algebraic equation:

2d2 + d(4R − 2x − 2y) + (x2 + y2 − 2R(x + y) + R2) = 0 (12)

The root of interest is obtained by using the limit condition: d(2R, R) = R.

Zone I, A and C, and II outside the bounding band. The function behaves exactly
like min.

Quadrant 3. In quadrant 3, we consider two possible approaches: one is similar
to the approach detailed above (Fig. 4 left), the second uses two lines symmetric
in respect to the line y = x and opened by an angle θ (see Fig. 4 right).

Considering a point (x, y) in the quadrant, if it is outside the angle sector
made by the two lines, then the value of the function is exactly given by the min
function. If it is inside, then the value of the function is computed as follows.
The point belongs to the circular arc given by: (x − x0)2 + (y − y0)2 = r2. x0, y0
and r are expressed as functions of d, the searched function value, and α the
line-axis angle. It comes that d is the solution of:

d2(tan2(α) + 2tan(α) − 1) − 2d(x + y)tan(α) + x2 + y2 = 0 (13)

verifying d(x, x
tanα ) = x

tanα (for example).
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Quadrants 2 and 4. In quadrants 2 and 4, the smooth min behaves exactly
like min.

The final full expression for the SARDF intersection operation is given in the
Appendix.

3.3 Smoothness of the SARDF Intersection

The SARDF operations are functions in C1(R∗ × R
∗); the singularities in the

resulting function are only due to the deining functions of primitives or to the
need to model sharp features in the resulting solid. The discontinuity of the
gradient in the origin is intentional to allow creation of sharp features.

The main steps of the proof are given for the SARDF intersection only. In quad-
rants 2 and 4 the function is trivially C1. In quadrants 1 and 3 the function is sym-
metric with respect to the line y = x. Only the subset below this line needs to
be studied. The function is also trivially C1 piecewise, the discontinuity (of the
function values or the derivatives values) can appear only at the boundaries be-
tween the different expressions: on the branches of the parabola, the straight lines
(y = x−R and y = x+R) or the arc boundary A1A2 between the growing radius
and the fixed radius (quadrants 1 or 3), or on the straight lines (quadrant 3).

C1 Continuity in Quadrant 1. The SARDF intersection is piecewise contin-
uous. The continuity on the parabola branches, and on the lines is obvious by
construction. We need to check it only on the circular arc boundary A1A2.

Continuity at the circular arc boundary A1A2. We study the continuity of the
expression of the SARDF intersection at the circular arc boundary between
the zones I,B, and II. Let P = (x, y) = (2R + Rcos(u), 2R + Rsin(u)), with
u ∈ [ 5Π

4 , 3Π
2 ], be a point on that circular arc. The value of the function at P

is given by its value at the point A1 and is y = R. We check that this value
matches the value of the expressions in the zones I,B and II at P, by checking
that the algebraic equations 11 and 12 hold. After applying some calculus, we
confirm that the relations given by Eq. 11 and 12 hold and we can conclude with
the continuity at that boundary.

We give implicit definitions for the partial derivatives of the smooth function
d in the quadrant 1, and then prove it is C1 on that domain, with exception
of the origin, by verifying that the partial derivatives match on the boundaries
points.

Expression for the partial derivatives in zone I,B: In zone I,B, the square root of
the function

√
d satisfies the algebraic equation 11. Taking the partial derivative

by x of 11 gives: 4zxz3 − 12
√

Rzxz2 − 8Rzxz + 4
√

R(x + y)zx + 4
√

Rz − 2x = 0.
It follows that: zx = 2x−4

√
Rz

4z3−12
√

Rz2−8Rz+4
√

R(x+y)
. Since z =

√
d, it comes that

zx = 1
2dx

1√
d
. Combining it with the previous expression, we get a relation for

the partial derivative of the function in zone I,B
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dx = 2
√

d
2x − 4

√
Rz

4z3 − 12
√

Rz2 − 8Rz + 4
√

R(x + y)
(14)

with z(x, y) =
√

d(x, y).
By the same procedure, we obtain an expression for the partial derivative by

y in zone I,B:

dy = 2
√

d
2y − 4

√
Rz

4z3 − 12
√

Rz2 − 8Rz + 4
√

R(x + y)
(15)

with z(x, y) =
√

d(x, y).

Expression for the partial derivatives in zone II, within the bounding band: In
zone II, within the bounding band, the function satisfies Eq. 12. With the same
method as above, we take the partial derivative by x, it gives: 4dxd + dx(4R −
2x − 2y) − 2d + (2x − 2R) = 0. It follows that:

dx =
2d − 2(x − R)

4d + (4R − 2x − 2y)
(16)

Similarly an expression for the partial derivative by y can be obtained:

dy =
2d − 2(y − R)

4d + (4R − 2x − 2y)
(17)

Expression for the partial derivatives in zone I,A and zone II, below y = x − R
The function is exactly min in these two areas, and so the partial derivatives in
the x direction is 0 and 1 in the y direction.

We verify the continuity of the partial derivatives at the different boundary
curves.

Continuity of the partial derivatives at the parabolic arc. Let P = (x, y) =
(u, u2

4R ), with u ∈ [0, 2R], be a point on the arc, at P, z =
√

d = u
2
√

R
; it is easy

to verify that at P equations 14 and 15 give: dx = 0 and dx = 1.

Continuity of the partial derivatives at the line y = x − R. Let P = (x, y) =
(u, u − R), with u ∈ [2R, ∞[ be a point on the line, at P , z =

√
d = u − R; it is

easy to verify that at P equations 16 and 17 give: dx = 0 and dx = 1.

Continuity of the partial derivatives at the circular arc boundary. Let P =
(x, y) = (2R + Rcos(u), 2R + Rsin(u)), u ∈ [5Π

4 , 3Π
2 ] be a point on the circle

boundary between the growing radius zone and the constant radius zone. At
P, the value of the function is R. Using these informations in equation 14, we
obtain after straightforward calculus dx = cos(u)

cos(u)+sin(u) . Similarly, with equation

16: dx = cos(u)
cos(u)+sin(u) .
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Similarly for the partial derivative dy, equation 15 gives: dy = sin(u)
cos(u)+sin(u) .

And equation 17 gives: dy = sin(u)
sin(u)+cos(u) .

With the equality of the partial derivatives we can conclude to the C1 conti-
nuity of the SARDF intersection on the boundary circle. The C1 continuity still
holds at A1, with u = 3Π

2 .

C1 Continuity in Quadrant 3. There are two possible approaches in the
quadrant 3 to constructing the SARDF intersection. One is similar to the con-
struction in quadrant 1, with a growing radius smoothing bounded by a thresh-
old. The proof for the smoothness of the function is similar as in quadrant 1.
We give a sketch of the proof for the second approach, which uses two lines
symmetric in respect to the line y = x and opened by an angle θ (see Fig. 4
right). The function is continuous by construction and piecewise C1, except at
the origin. We check only the continuity of the different partial derivatives at a
boundary line.

We use equation 13 to have expressions of the partial derivatives inside the
two boundary lines.

dx(x, y) =
2d(x, y)tan(α) − 2x

2d(x, y)(tan2(α) + 2tan(α) − 1) − 2(x + y)tan(α)
(18)

dy(x, y) =
2d(x, y)tan(α) − 2y

2d(x, y)(tan2(α) + 2tan(α) − 1) − 2(x + y)tan(α)
(19)

It is easy to check that the partial derivatives are continuous at any point on the
boundary line, by evaluating dx and dy at a point of the line and comparing with
the values of the partial derivatives from the adjacent zone (where the function
behaves like min, thus has partial derivatives with values 0 along x and 1 along
y). Given P : (u, u

tan(α) ), u ∈ R
− a point on the lower boundary line, we have

dx(P) = 0 and dy(P) = 1.

3.4 SARDF Modeling Framework

The SARDF framework is a restricted version of an FRep system where the
SARDF implementations of the set-theoretic operations are used instead of the
R-functions or min/max, and primitive definitions are limited to distance func-
tions or their approximations. Of course, primitives, which are not defined by
distance functions or an approximation, can be used, as well as operations, which
do not conserve the distance property or a reasonable approximation, however
it will result in a global defining function for the object, which does not keep the
Euclidean distance property.

SARDF operations, intersection, difference, and union of two geometric ob-
jects defined by distance functions f1 and f2 are trivially obtained by replacing
syntactically x and y in the previous SARDF functions by f1 and f2. Note that
x and y can be seen as two real functions (x, y, z) → x and (x, y, z) → y, which
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correspond geometrically to two orthogonal halfspaces. The smoothness of the
resulting function defining the final object depends on the smoothness of the
SARDF functions, which was studied above, and on the defining functions of
primitives (details can be found in [6]).

4 Constructive Heterogeneous Objects Modeling with
SARDF

We present in this section some examples to illustrate the use of the introduced
SARDF operations and normal primitives in constructive heterogeneous object
modeling. The SARDF operations are used instead of the R-functions or the
min/max functions in the different constructive trees to define the geometry of
the solid and the partitions where attributes are defined.

We use the term normal primitive to refer to a primitive with a defining
function p, which at a given point x ∈ R

3, is equal to the Euclidean distance, or
its approximation, from x to the surface p−1(0). A list of primitives with known
expressions for the distance is given in [9].

We show in the following through two and three-dimensional examples how
different expressions for the set-theoretic operations affect the material distrib-
utions and their properties.

4.1 Two-Dimensional Example

At first, we illustrate the use of SARDF for modeling a two-dimensional hetero-
geneous object. The geometry of the object (Fig. 6a) is defined as f(X) ≥ 0,
where f is evaluated by traversing the constructive FRep tree [16] with a rec-
tangle and disk primitives in the leaves, and the subtraction operation in the
node.

This object is made of two materials and three material regions (Fig. 6b). We
use the notation m1(X) and m2(X) for the scalar volume fraction component of
the materials 1 and 2. For visualization purposes, the material distributions are
mapped to a grey color space: a black or constant grey color is attributed to each
material and the final grey color is the resulting gradient value corresponding to
each material contribution, weighted by the scalar volume fraction.

Among the three material regions, there are two material features correspond-
ing to spaces where: there is only material 1 uniformly distributed (black in Fig.
6b) and there is only material 2 uniformly distributed (constant grey area in Fig.
6b). The last material region corresponds to the functionally graded material.
The geometry of each material region is defined using FRep in a constructive
way, similarly to the shape’s geometry, with SARDF operations in the nodes
and normal primitives in the leaves. The resulting functions provide C1 approx-
imation of the distance to each material region. The distances to the material
features are used to specify the functionally graded material.

The scalar volume fraction of each component material in the functionally
graded material region is given by: m1(X) = w1(X)M1 and m2(X) = w2(X)M2,
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where M1 and M2 stand for the value of the scalar volume fraction on the
boundary of the first and second material features shown in Fig. 6b.

For the weighting functions w1(X) and w2(X), we use a normalization of each
inverse distance functions:

w1(X) =
1

d1(X)
1

d1(X) + 1
d2(X)

=
d2(X)

d1(X) + d2(X)
(20)

w2(X) =
1

d2(X)
1

d1(X) + 1
d2(X)

=
d1(X)

d1(X) + d2(X)
(21)

where d1(X) and d2(X) are the distances from point X to the boundary of the
material features.

The distance map d1 is illustrated in Fig. 7. Fig. 7a and Fig. 7b correspond
respectively to the approximate distance map d1 when the R-functions and the
SARDF operations are used correspondingly to define the shape. The approxi-
mate distance map built using R-functions indicates that despite good smooth-
ness properties, R-functions are not a good approximation to the distance func-
tion, making it difficult to control accurately material distributions.

The weighting functions w1(X) and w2(X) are continuous, satisfying the in-
terpolation condition wi(∂Bj) = δij , where i, j ∈ 1, 2, δi,j is the Kronecker
symbol1, and ∂Bj are the boundaries of the material features. The functions
w1(X) and w2(X) form a partition of unity.

The properties of w1(X) and w2(X) are illustrated in Fig. 8 with a cross
section of the model through the y−axis and the graph of the weighting functions
w1(X′ = (x, const)) and w2(X′) along the x-axis. Note that in the current
example wi and mi, i ∈ 1, 2, have the same graph, since the values of the volume
fraction on the boundaries, M1 and M2 have been chosen equal to 1.

There is a C1 discontinuity at the points on the boundary of the material
features (Fig. 8). This can cause the same problems as the distance function C1

discontinuity. Fortunately, these sharp corners can be smoothened by a modifica-
tion of the expressions for the coefficients (Eq. 20 and 21). Indeed the expressions
used for the material feature weights correspond to a particular case of the inverse
distance weighting [27]. More general expressions are: w1(X) = dk

2(X)
dk
1(X)+dk

2(X) and

w2(X) = dk
1(X)

dk
2(X)+dk

1(X) . The case k = 1 gives Eq. 20 and 21. The parameter k

controls the smoothness of the functions on the points of the material features.
Replacing every SARDF operation by an R-function or min/max in the con-

structive trees for the geometry of the solid and the material regions gives differ-
ent material distributions in the same cross-section (see Fig. 9, right and 9, left).
Figure 9 reflects at the level of the material distribution the problems of using
the R-functions (right graph), or min/max (left graph) in constructive hetero-
geneous modeling. Figure 9, right, shows the role played by the accuracy of the
distance approximation when the distance is used to parameterize the material

1 Equals to 1 if i = j and 0 otherwise.
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                                         (a)                                                                               (b) 

Fig. 6. Two-dimensional CAD part. (a) Geometry of the CAD part defined by an FRep
model. (b) Three different material regions (outter black: material 1, inner constant
grey: material 2, grey gradient: functionally graded material).

Fig. 7. Approximate distance map d1 from point X to the boundary of the region
where only material 1 exists. (a) Using R-functions. (b) Using SARDF operations.

distributions. The unpredictable behaviour of the distance approximation makes
the task of the designer difficult. For example, we would expect that the first
part of the black curve (just before the intersection with the grey curve) is linear.
This behaviour of the R-functions was noticed by Shin and Dutta in [28].

Figure 9, left, illustrates the C1 discontinuity of the min (and max) functions
and its impact on thematerial distribution.Bothdistributions ofmaterial 1 (black)
and 2 (grey) have two points of C1 discontinuity (circled in Fig. 9, left). It results
in problems of stress or concentrations as noticed by Biswas et al in [4].

Using SARDF for the set-theoretic operations does not introduce new points
of C1 discontinuity, and keeps a good approximation of the distance, these prop-
erties can be seen in the graph of the material distributions (Fig. 8).

In this example (as well as in the following) only two materials are in the
overlapping zone. More materials can be blended and the expressions for inverse
distance weighting (Eq. 20 and 21) can be extended for the cases where more than
2 materials are blended. Additional details on the inverse distance weighting used
for the interpolation of materials defined over functionally defined sets can be
found in [23]. More complex expressions for compositions of multiple materials,
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Fig. 8. A cross-section parallel to x-axis and the distribution of the materials in the
cross section for the CAD part constructed with SARDF functions

Fig. 9. Material distributions in the cross-section y = 2 for materials 1 and 2 using:
left, min/max in the constructive trees for the geometry of the solid and the material
regions. The circled points correspond to points of C1 discontinuity of the material
distributions. Right: R-functions in the constructive trees for the geometry of the solid
and the material regions.
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like vector valued materials, constrained and weighted interpolation of materials,
can be found in [4].

4.2 Three-Dimensional CAD Part

The second example illustrates more complex three-dimensional shapes for the
geometry of the object and the material features.

The overall geometry of the object is a block with two (constant) material
features inside. We keep the same notation as in the previous subsection, with
m1(X) and m2(X) the scalar volume fraction of the materials 1 and 2. Figure
10a shows the first material feature corresponding to the material 1 (in black);
it is cut by a planar half-space for visualization purposes only. Figure 10b shows
the second material feature (in red); its geometry is composed of blocks and
ellipsoids, combined with SARDF unions and intersections. The right of Fig.
10b illustrates a zoom on one of the pins. Such a pin is modeled with ellipsoids
as primitives and SARDF union and intersection as operations. Exactly, it is the
SARDF union of four ellipsoids, which are after subtracted from a fifth ellipsoid.

To express the material behaviour in the region between the two material
features (this region can be seen in Fig. 10c), we use the equations 20 and 21
for the weights for each material feature. It indicates that the closest material
feature has the strongest influence. The overall distribution of the materials is

Fig. 10. Geometry of the material features of the 3D CAD part: (a) the first material
feature, (b) the second material feature, with a zoom on one of the pins, on the right,
(c) union of the two material features
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Fig. 11. Distribution of two materials. Black color corresponds to material 1, constant
grey color to material 2. The grey intensity variation indicates the fraction of each
material. (a) Two cross sections are made for x = 0 and y = 0 to show the material
distribution. (b) A zoom is made on one of the pins with two additional cross-sections.

shown in Fig. 11a. The geometry corresponding to the second material feature is
rendered, using a grey constant color, then for the visualization of the material
distribution, two cross-sections are made: one for x = 0 and one for z = 0. For
each of the cross-section, the material distribution is projected to a grey color.

5 Conclusion

A framework for the construction of heterogeneous volumetric objects using
distance-based scalar fields has been presented. This framework is named SARDF,
for Signed Approximate Real Distance Function and is a subset of the Function
Representation (FRep) model [16]. Within this framework, an object is modeled
in a constructive way by applying operations (SARDF operations) on primitives
(defined by the Euclidean distance function or its approximation). Primitives and
operations are defined functionally, with a closure property: the final object, ob-
tained by applying operations to functions, is also described by a function.

Extra requirements on the overall defining function are imposed: its value
should return an approximation of the signed Euclidean distance function, and
it should be smooth. The traditional implementations of set-theoretic operations,
namely the R-functions and min/max, either suffer from inaccurate Euclidean
distance approximation (R-functions), or are not smooth and create discontinu-
ities of the partial derivatives of the constructed function (min/max). Therefore,
we have introduced new functions, and presented their constructions and imple-
mentations for defining set-theoretic operations that keep a reasonable approxi-
mation of the distance function and are smooth. We have proven that SARDF
operations are C1.
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We have proposed to use the SARDF framework for constructive heterogeneous
object modeling as an extension of the constructive hypervolume model [15]. The
distance function is used here to parameterize the material distribution [4]. We
have illustrated through case studies the properties and importance of distance
and smoothness of SARDF in constructive heterogeneous object modeling.

Appendix: Expression for the SARDF Intersection

Let f1 and f2 be the distance functions defining two solids by f1 > 0 and f2 > 0.
The intersection between the associated solids is defined by applying the SARDF
intersection (∧s) function on f1 and f2 as follows:

Case 1: f1 > 0 and f2 > 0

In the following paragraph E1 corresponds to the boolean expression: E1 =
f1 < R or f2 < R or (f1 < 2R and f2 < 2R and (f1 − 2R)2 + (f2 − 2R)2 > R2).

– if E1 and f2 >
f2
1

4R and f1 >
f2
2

4R , then f1 ∧s f2 = z2. Where z is the root of
z4 − 4

√
Rz3 − 4Rz2 + 4

√
R(x + y)z − (x2 + y2) = 0 verifying z2(2R, R) = R.

– if E1 and f2 ≤ f2
1

4R , then f1 ∧s f2 = f2.

– if E1 and f1 ≤ f2
2

4R , then f1 ∧s f2 = f1.
– if not(E1) and f1 − R < f2 < f1 + R, then f1 ∧s f2 = 1

2a (−b +
√

b2 − 4ac).
Where a = 2, b = −2f1 − 2f2 + 4R and c = f2

1 + f2
2 − 2f1R − 2f2R + R2.

– if not(E1) and f2 ≤ f1 − R, then f1 ∧s f2 = f2.
– if not(E1) and f2 ≥ f1 + R, then f1 ∧s f2 = f1.

Case 2: f1 ≤ 0 and f2 ≥ 0

f1 ∧s f2 = f1.

Case 3: f1 < 0 and f2 < 0

E2 corresponds to the boolean expression: E2 = f1 > −R or f2 > −R or
(f1 > −2R and f2 > −2R and (f1 + R)2 + (f2 + R)2 < R2).

– if E2 and f2 < − f2
1

4R and f1 < − f2
2

4R , then f1 ∧s f2 = z. Where z is the root of
d4

16R2 − d3

2R + 1
2Rd2(f1+f2−2R)+(f2

1 +f2
2 ) = 0 verifying z(−2R, −R) = −2R.

– if E2 and f2 ≥ − f2
1

4R , then f1 ∧s f2 = f2.

– if E2 and f1 ≥ − f2
2

4R , then f1 ∧s f2 = f1.
– if not(E2) and f1 − R < f2 < f1 + R, then f1 ∧s f2 = 1

2a (−b +
√

b2 − 4ac).
Where a = 2, b = −2f1 − 2f2 + 4R and c = f2

1 + f2
2 − 2f1R − 2f2R + R2.

– if not(E2) and f2 ≤ f1 − R, then f1 ∧s f2 = f2.
– if not(E2) and f2 ≥ f1 + R, then f1 ∧s f2 = f1.
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Case 4: f1 ≥ 0 and f2 ≤ 0

f1 ∧s f2 = f2.
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Abstract. In this paper, a new feature-based material blending method is 
proposed to represent and design heterogeneous objects. Geometric features 
dictating the material variation are defined as material governing features to 
control material composition inside the objects. Interrelations between the 
material governing features and material attributes are established by 
constraining the geometric and material features and retained in the object 
model. Using these relationships, variant heterogeneous objects are developed 
easily by changing the geometric and material features of the heterogeneous 
object. Geometric methods are developed to blend not only the geometric 
features but also the property requirements at each of the feature. To obtain the 
best material variation inside the object, an optimization-based solution method 
based on the object's functional requirements are developed. Implementation 
and illustrative examples are also presented in this paper.  

Keywords: Heterogeneous object design, feature-based design and modeling, 
material features, design optimization. 

1   Introduction 

In many engineering applications, the products are designed to meet one or more 
functional property requirements for a particular real life application. For instance, the 
designed part might be required to bear some load or pressure applied to it, or it might 
be required to withstand very high temperatures. The designed product must possess 
the intended functional properties to perform satisfactorily in its application. The 
product’s properties depend on not only its geometric shape but also the properties of 
the material which it is made of. Therefore, the design process involves determining 
the object’s geometric and material attributes that are most suited for the intended 
application. Traditionally, the design process starts with choosing the most suitable 
material whose properties are consistent with those desired in the product. For 
instance, steel is preferable to ceramic where the object must exhibit good tensile 
strength.  

Traditionally, the underlying assumption in the design process is that the final 
object is made of a one single material (homogeneous material). The main reason 
behind this assumption is that most traditional manufacturing processes such as 
casting and molding are capable of producing only homogeneous products.  
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In most applications, choosing one suitable homogeneous material satisfies all the 
property requirements imposed on the product. However, in many engineering 
applications, there can be conflicting or special functional property requirements 
imposed on an object such that no homogeneous objects can meet all the requirements 
satisfactorily. This is because homogeneous materials usually contain some desired 
and some undesired properties.  

Use of multi material objects is a possible solution in case of conflicting or special 
property requirement cases. However, multi-material objects exhibit sharp interfaces 
between the lumps of dissimilar materials. In course of time, often stress 
concentration develops at these interfaces due to poor interfacial bonding strength. 
This eventually separate the materials creating a crack in between which ultimately 
leads to failure of the object [12].  

Therefore, it is more desirable to eliminate the sharp interfaces and obtain a smooth 
variation among different materials. Objects with such kinds of material composition 
variation are called heterogeneous objects. These objects do not have any sharp 
interface of dissimilar materials and therefore exhibit a gradual change in material 
composition and associated properties in geometric space [26]. 

To satisfy the functional property requirements imposed on a heterogeneous object, 
material compositions must vary continuously throughout its geometric domain. This 
enables the object to exhibit different properties at its different regions which play a 
key role behind the object’s performance. Therefore, besides geometry, the material 
variations also need to be designed so that the object can best satisfy all the functional 
requirements [23].  

Designing heterogeneous objects is a complex task because the design process 
involves not only developing models for both the object geometry but also its varying 
material compositions. Any new method of heterogeneous object design needs to 
have a few basic capabilities which are indispensable. For the purposes of 
visualization, analysis, modifications and fabrication, the design method must allow 
for creation of a solid model of the object containing not only the complex geometry, 
but also the material composition information of the object [26].  

This paper presents a novel integrated design methodology which establishes and 
integrates geometric and material attributes of a heterogeneous object by utilizing the 
principles of feature-based design. The heterogeneous object is represented as a 
feature-based model where both the geometry and material attributes are identified as 
object features. Continuous material composition variations are represented with 
relation to the object’s geometric features as functions of parametric distances in one, 
two or three parametric dimensions. Given the initial geometric model of the object, 
the material features are determined through optimization techniques. In this research 
work, the focus is given to development of methodologies in design and 
representation of heterogeneous objects. Determination of exact overall material 
properties and functional requirements are beyond the scope of this research. 

The rest of the paper is organized as follows: Section 2 reviews the literature. In 
Section 3, the developed methodology for feature-based design of heterogeneous objects 
is described. Section 4 explains the methodologies for material blending. Feature 
matching for material blending is presented in Section 5. Section 6 describes the 
optimization processes to establish the material features. Implementation and examples 
are presented in section 7. Finally, conclusions are drawn in Section 8. 
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2   Literature Review 

In this paper, heterogeneous object modeling is defined as the process of developing 
and storing a heterogeneous object’s geometry and material information. Modeling is 
an integral part of design optimization which is the process of establishing the 
object’s geometry and material composition variation for a specific application. 

In the literature, several modeling methodologies have been proposed: the rm-
object approach by Kumar and Dutta [11], its extension into constructive methods of 
heterogeneous object representation by Shin and Dutta [29], grading source based 
approach by Siu and Tan [30] and its application to fiber type reinforcement 
composites modeling [31]. All these methods essentially represent the material 
variation as functions of spatial position relative to a reference entity and material 
variations were assumed to be given a priori.   

Ma et al [14] developed voxel based volume modeling where the object geometry 
is discretized into very small cubes called voxels. Constant material compositions are 
assigned separately to each voxel. Voxel based methods are based on discrete units 
and their accuracy is determined by the number of voxels used in the model. 
Therefore the voxel based representation may not be as accurate as a continuous 
representation. Moreover a voxel model after calculated cannot be used to obtain 
similar variant models as the original topology and surface information has been lost.   

Some researches, such as design of heterogeneous flywheel [6] and injection mold 
cooling systems [5] have been reported to present the advantages of heterogeneous 
objects in specific applications. The modeling methods used in these researches 
appear to be rather application-specific and possible extensions and applications of 
these methods to generic design cases require further study.  

In a heterogeneous object design problem, one of the principal tasks is to establish 
the material attributes of the object. In the literature, it was assumed that the variation 
follows a polynomial of a certain order and the job of the designer is to calculate the 
coefficients of the polynomial terms [15]. This method may sometimes be erroneous 
because the actual variation may follow a polynomial of an order higher than that of 
the designer’s guess, or worse, the variation might not follow any polynomial at all.  

B-spline volume representation [18, 16] has been used to represent free-form 
heterogeneous objects. Qian and Dutta [18] have presented a heterogeneous object 
design method that uses B-spline volumes to model the object geometry. The material 
variation is represented by a physic-based process called diffusion. In the paper, the 
material properties are specified at the object control points, assuming that the 
material variation would always be represented as B-spline functions of geometry. In 
case the properties are specified on the object geometry itself, expressing this 
information in terms of control points might be difficult. In [16], a new representation 
method to specifying attribute data across a trivariate NURBS volume has been 
proposed. Although, the presented method is not specifically used for heterogeneous 
object representation, the method could be used to represent the material composition 
inside a heterogeneous object.  

Biswas et al [2] have shown that any material function can be converted to a 
canonical form of material variation based on Taylor series approximation. The 
canonical form is an approximate polynomial function of Euclidean distances.  
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In a prototype CAD system developed by Bhashyam et al [1], a designer starts with 
an initial rm-object model [11] and tries to improve upon it based on his/her 
experience. The material variations in the model are chosen from in-built library 
functions which are mostly expressed as polynomials. Whenever changes are made in 
the model, a Finite Element Analysis is carried out to decide whether to accept the 
changes or not. The library functions are not derived as a part of the design process, 
rather they are collected from papers on manufacturing listed in the literature. 
Therefore, in case the chosen library functions do not work, the designer may not 
have any other alternatives. 

Chen and Feng [3] provide an approach based on axiomatic design principles. The 
method creates a 3D variational geometric model of the component before it is 
divided into several “regions” using commercial FEA software. Material composition 
in each region is assumed to be constant. Optimal material constituent composition 
are selected using optimization techniques such as sensitivity analysis and steepest 
descend method. Since the material attributes are not expressed as a function of 
geometry, the material composition must be stored explicitly in every region. 
Therefore, in cases of complex objects where a large number of regions are created, 
memory space requirement to store material compositions for all the regions might be 
prohibitive.  

Jackson et al [7] have developed a heterogeneous object modeling method with 
local composition control (LCC) based on a subdivision method.  The barycentric 
Bernstein blending functions are used to define the material composition inside the 
object. The specification of composition is calculated as a function of the distance 
from the surface of a part. Liu et al [13] has proposed a parametric feature-based 
methodology for the design of solids with local composition control (LCC). Material 
composition features are related to the geometry of the designed which allows 
changing the geometry and material composition simultaneously until a satisfactory 
result is obtained. The Euclidean digital distance transform and Boundary Element 
Method are used to calculate the material composition. These methods are used to 
fabricate objects with three-dimensional printing (3DP) process [21] 

The material variation information in the object model is also important considering 
the manufacturing aspect of heterogeneous objects. Recently, a number of Rapid 
Prototyping (RP) processes have been found capable of manufacturing these objects, 
such as three-dimensional printing (3DP) [21], shape deposition manufacturing (SDM) 
[32], multi material selective laser sintering (M2SLS) [8], laser engineered net shaping 
(LENS) [4]. A new molding method proposed in [9] and [10] is also capable of 
fabricating heterogeneous objects with continuous material variation. Therefore, the 
object model also needs to contain continuous material variation.  

In this paper, to model heterogeneous objects, feature-based methods are employed 
to retain the geometry-material relationship inside the object. To represent the 
continuous spatial distribution of material compositions, B-spline functions are used 
which can represent virtually any shape of material variation. These B-spline 
functions are not known a priori but are derived through an optimization process. In 
this paper, the focus is given to development of methodologies in design and 
representation of heterogeneous objects. Related topics such as determination of exact 
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overall material properties and stress analysis are beyond the scope of this paper. The 
details are presented in the following sections. 

3   Feature-Based Design of Heterogeneous Objects 

In the feature-based design method, an object model is modeled using its features  
[27, 23]. The features are constrained by various parameters which specify their 
relationships with other features. In this approach, the features of an existing model 
can be changed to obtain a new model, called a variant, and the process is called 
variational design. In the variant model, all the relationships and constraints of the 
parent model are maintained. In this research, the material attributes are developed 
with relation to the geometric features for variational heterogeneous object design. 
These relationships are formalized and established as object-material constraints.  

In feature-based modeling, a free-form object O is modeled as a collection of two 
components – a set of features (F) and a set of relations (R) as follows [23]:  

  
  O = (F, R)            (1)

  F = {FFa}a = 0, ..., A 

  R = {
21aaR }

2121 ;,...,0;,...,0 aaAaAa ≠==  

    
Each feature FFa is represented as a collection of surfaces on the boundary of the 

object. R contains the relations 
21aaR between a pair of features

1aFF and
2aFF . These 

relations are considered constraints which remain valid even when the features are 
changed or modified.  

The main driving forces in feature-based design are the object features. The objects 
under design consideration are required to possess some properties so that they can 
function properly in their respective applications. During the design process, these 
property requirements dictate the object’s geometry and the material. Specific features 
of an object that dominate the design material selection are termed as material 
governing features (GF).  

In cases where there are different property requirements at more than one feature in 
a single object, such that each material governing feature tries to dominate different 
materials, there might be a conflict of material selection. It is assumed that properties 
of a mixture of materials are contributed proportionally by each of the materials. 
Therefore, a fixed ratio composite of all the suitable materials may not satisfy the 
conflicting requirements. The best solution is to vary the material composition inside 
the object such that the most satisfactory performance is achieved. Since the material 
composition plays an important role behind the object’s performance, the variation of 
material composition is defined as a material feature.  

To include material features, the traditional feature-based model given in Equation 
(1) needs to be modified to include two more characteristic sets, namely, the material 
composition and composition variation to Equation (1). The point-set constituting a 
heterogeneous object made of n primary materials nMMM ...,,, 21  is denoted by O 

as follows [26, 23]: 
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  O = (F, R, M, C);   

  F = { AaaFF ...,,0}{ = , BbbGF ...,,0}{ = } ∈ 3E         (2) 

  R = {
21aaR }

2121 ;,...,0;,...,0 aaAaAa ≠==  

  { } n
knk

k
k MMtsrfM ∈= = }{)},,(,{ ...,,1

)(M  

  BbbC ...,,0}{C ==  

where 3E  is the three-dimensional Euclidean space and nM  is the n-dimensional 
material space. The material governing features (GFs) are identified and separated 
from the other form features. The governing features and their relations with other 
form features are still maintained in the relations set R. The model hierarchy is shown 
in Figure 1. 

 

Fig. 1. Feature-based model of a heterogeneous object [23] 

Form features {FFa}a = 0, …, A, and the material governing features 

BbbGF ...,,0}{ = are represented as B-rep models with free-form surfaces represented 

by B-spline functions of parameters u and v:  
 

  ∑∑
= =

=
α β

0 0

,)()(),(
i j

ai,jj,qi,pa  Pv  Nu NvuFF          (3) 

As described before, the geometric constraint set, R, specify the relationships 
between the various form features of the object. The object O now has B + 1 number 
of material governing features BbGFb ...,,0},{ = . The object O is composed of n 

primary materials which are the elements of the material composition vector, M. 
Therefore, the object has n material features. Each material feature contains two 
pieces of information, the name of the primary material kM  and the 3-dimensional 

mathematical form of its variation ),,()( tsrf k  as a B-spline function. The material 

features are represented by free-form entities, such as curve, surface and volumes. 
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Upon evaluation, ),,()( tsrf k  gives the value of volume fraction of kM as a function 

of the parameters r, s and t [23]. 
The material variation can be one-, two- or three-dimensional. For objects with 

one-dimensional material variation, a 2D B-spline curve is used to represent the 

variation. In Euclidean space 3E , one dimension ⎯ the x- coordinate gives the 
parametric distance from a relative feature and the other dimension ⎯ the z-
coordinate gives the volume fraction of the respective material. Volume 

fraction )(kf of material kM  is given as a parametric curve as [23]: 

  ∑
=

=
ε

ρ
0

)()( )(
j

k
jj,

k  Qt Ntf )(            (4) 

where, )(k
jQ  are the control points that control the volume fraction )(kf  of material 

Mk. In a similar way, for objects with two-dimensional material variation, a B-spline 

surface of degree (ρ, θ) is used to represent the variation. Volume fraction )(kf of 

material Mk is given as a parametric surface as [23]: 

  ∑∑
= =

=
ε φ

θρ
0 0

)(
.

)(

1 2

2121 )( )(),(
j j

k
jj,j,j

k  Qt Ns Ntsf         (5) 

Similarly, three-dimensional material variation can be represented by a B-spline 
volume of degree (ρ,θ, ϕ) as [23]: 

  ∑∑∑
= = =

=
ε φ ω

ϕθρ
0 0 0

)(
,.

)(

1 2 3

321
321 )( )()(),,(

j j j

k
jjj,j,j,j

k  Qt NsNrNtsrf

 

(6) 

The overall properties at any point P ∈ O inside a heterogeneous object are directly 
proportional to the volume fractions of the constituent materials. If the materials 

nMMM ...,,, 21  have values of associated properties 
nMMM πππ ...,,,

21
respectively, 

the overall property at a point P is given as: 

  
nM

n
MM

P fffΠ πππ ...... )()2()1(
21

+++=          (7)                                            

where )(kf  is the volume fraction of material kM . By keeping the geometry 

unchanged, varying the material composition can directly vary the overall properties 
of a heterogeneous object.  

A feature-based heterogeneous object model created for the first time based on a 
set of design variables is called an initial model. Features of the initial model can 
easily be changed to obtain different object models, called variants. In Figure 2(a) 
shows an example design with material composition varying between two material 
governing features, GF1 and GF2 and the variation direction t is from GF1 and GF2. 
Plotted below each model are the B-spline curves that represent the material features. 
The first and last control points of the curve are located on GF1 and GF2, respectively 
(thereby constrained). Figure 2(b) and (c) show variant models by changing material 
and geometric features respectively [24].   
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Fig. 2. 1D material feature (curves), corresponding variation in the solid model and variants, (a) 
initial model with 1D material features, (b) and (c) variant models [24] 

In the block in Fig 3(a), material composition is varied between 21 GFGF −  and 

43 GFGF − . The associated B-spline surfaces represent the red material features. 

Variant models from are shown in Figs. 3(b) and 3(c).  
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Fig. 3. 2D material features (surfaces), corresponding variations in the solid models and 
variants, (a) initial model, (b) and (c) variant models [24] 

4   Material Blending 

In this section, a mathematical model for determining the material composition 
variation with respect to the material governing features (GFs) is determined. A 
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blending model is proposed to represent the continuous variation of property 
requirements (and therefore the material composition) among a set of material 
governing features (GFs). The material features are constrained to these governing 
features and the direction of the variation is the same as the parametric lofting 
direction.  

Traditionally, the lofting operation [20] is used to generate a blended entity which 
from a set of lower dimensional entities called generators (curves and surfaces in 1-D 
and 2-D respectively). As shown in Figs. 4 and 5, the process can blend not only the 
geometric shape of the generators but also the property requirements at each of the 
generators. In the same way lofting can be used to get a smooth transition from one 
governing feature to another. It is assumed that each isoparametric entity in the blend 
direction will represent constant property requirements. Therefore, to find out and 
establish the material features, the loft entity must be constructed first. 

(a) (b)

Lofting

GF u1( )
GF u2( )

GF u3( )

Lofted surface with blended
 shape and property

t

Generators

 

Fig. 4. (a) Generator curves with different property requirements (represented by different 
colors) and (b) lofted surface blends both geometric shape and property requirements [24] 

t

(a)

Lofting

GF u,v1( )

GF u,v2( )

GF u,v3( )

(b)

Generators
Lofted volume that blends 

 shape and property

 

Fig. 5. (a) Generator surfaces with different property require-ments (represented by different 
colors) and (b) lofted volume blends both geometric shape and property requirements [24] 

In this research, it is assumed that the property requirement at a point can be 
expressed as a function of the parametric distance from a governing feature, GF. In 
prismatic (regular) shaped objects, these functions are available.  

As example, consider a pressure vessel carrying fluid at high temperature Tin under 
high pressure Pin and the outside of the vessel is exposed to ambient pressure Pout and 
temperature Tout. The vessel of length L has its inner and outer radii equal to Rin and 
Rout, respectively. The vessel is given as a feature model with four form features, 
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namely inside, outside, top and bottom, as shown in Fig. 6(a). The designer identifies 
the inside and outside surfaces of the vessel as the material-governing features, GF1 
and GF2, as shown in Fig. 6(a). The material variation vector t is the parametric 
direction from the inside surface GF1 to the outside surface GF2, which means, the 
material varies in the radial direction.  

Ambient pressure ( ) and 
temperature ( ) outside the vessel  

P
T

out

out

High pressure ( ) 
and temperature ( ) 

inside the vessel

P
T
in

in

Inside surface ( )
with radius 

GF
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in

Outside surface ( )
with radius 
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R

2

out

Loft direction, t
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Top surface
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σR

σL

σT  

P
t
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Fig. 6. (a) Feature based pressure vessel model and (b) various stress components at point P 
within the vessel 

The pressure and temperature gradients together develop thermo-mechanical 
stresses inside the vessel. At a point P, which is at a radial distance R from the vessel 
axis and at a parametric distance t from the inner surface GF1, there are three stress 
components, RT σσ ,  and .Lσ  As shown in Fig. 6(b), these components are normal to 

each other and they are given as [23, 24]: 
thermaltT σσσ +=  

2
2

1
t

C
Ct −=σ ; 

2
2

1
t

C
CR +=σ ; thermalL σσ +=  

])()[()( outthermal TtTtEt −= ασ ;  
)( inout

in

RR

RR
t

−
−=                   (8) 

where 1C  and 2C  are constants. Note that the stress components are given as a 

function of parametric distance form the governing feature .1GF  The properties )(tα  

and )(tE  are the local thermal expansion coefficient and the local Young’s Modulus 
at a point with parameter t, respectively. 

So that the vessel does not fail under these developed stresses, the total yield 
strength Yσ of the point P  must be greater than the resultant von-Mises stress VMσ , 

which is given as [23, 24]: 

2

)()()( 222
RLLTTR σσσσσσσ −+−+−=VM

          (9) 
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However, in cases of freeform objects, these functions are not readily available and 
usually cannot be derived from the geometry. In such cases, a suitable function can be 
assumed which adequately represents the property requirement at a point. For 
example, the Equation (8) can be used for cases where the pressure vessel walls are 
not exactly cylindrical in shape. By properly choosing the values of the constants 1C  

and 2C , a function can be constructed that will more closely match the stresses.   

As explained in the previous subsection (also shown in Fig. 5), a lofted volume is 
obtained by performing a lofting operation on the material governing features. A 
procedure for generating lofted volume can be found in the earlier paper [23].  

As explained before, a lofted volume L(u, v, t) is obtained by performing a lofting 
operation on B + 1 number of material governing features BbbGF ...,,0}{ = , with a loft 

direction parameter t. In [17, 23], a procedure for generating lofted surfaces is 
presented. To generate a volume with material variations, a new blending method 
based on lofting is given in this paper.  

It is assumed that all governing features BbbGF ...,,0}{ = , are functions of parameter 

u and v of surfaces on the parametric volume ),,( tvuL . The features BbbGF ...,,0}{ =  

have degrees ),( bb qp  and knot sequences Ub and Vb, in u and v directions, 

respectively, as follows [23]: 
 

),( vuGFb =∑∑
= =

b b

bb
i j

bjiqjpi  Pv NuN
α β

0 0
,,,, )()( = ),,( *

btvuL  

[ *
bt = constant ; 0 ≤ b ≤ B;]           (10) 

 

where bjiP ,, is a bidirectional control net with )1( +bα and )1( +bβ  number of 

control points in u and v directions.  
The lofted volume is a free-form B-spline volume with degree (p, q, r) and knot 

sequences U, V and T [23].  

 ∑∑∑
= = =

=
α β γ

0 0 0

.),,(
i j k

ki,jk,rj,qi,p Rt  Nv  Nu NtvuL )()()(       (11) 

The unknown variables are the control points of the volume ki,jR . . To set up a set 

of equations with the unknowns, the *
bt  values are calculated [23]:  

 

 *
0t  = 0; *

Bt  = 1; 
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= =
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−

++
+=

α β

δβα 0 0 ,
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*
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1
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bjibji
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PP
tt  b = 1, …, (B – 1)      (12) 

where ji,δ  is the total chord length from 0,, jiP  to BjiP ,, . 
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The knot sequence in the t-direction T = ]...,,[ 10 ++rtt γ  is obtained as follows [23]:  

 
  ;0...0 === rtt    1... 11 === +++ rtt γγ  

  ∑
−+

=
+ =

1
*1 rj

ji
irj t

r
t   j = 1, …, γ – r        (13) 

 
Finally the set of equations are represented in a matrix form as follows [23]: 
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Solution of Equation (12) is the control points ki,jR .  of the volume L(u, v, t). 

5   Feature Matching for Material Blending  

In the previous section, a lofting based operation is used to blend material governing 
features. In this section, a feature matching operation between 2D (curves) material 
governing features is presented when material requirements change along features’ 
normal vectors.  

To be able to blend the material between two or more generator features along their 
normal direction, the normal vectors of the material governing features must match. 
While matching the normal vectors, the following conditions must be met for smooth 
transition: 

a) The connecting normal lines must not self-intersect. 
b) The length of the ruling lines must be minimum possible. 

This problem can be generalized at generating ruling surface between two 
directices. A naïve way of constructing the ruling lines is by parametrically 
connecting the points on the two directrices. The rationale here is that both end points 
of each ruling line have the same parameter values. This does not guarantee a non-
twisted ruled surface, particularly in case of directrices given as closed curves [25]. 

To mathematically express these two conditions, a function f can be defined that 
assigns a value to each ruling line as follows [25]:  

2

( ), ( )
( , )f =

−

N p N q
p q

p q
JJJJJG           (15) 

Without loss of generality, it can be assumed that the material governing features 
or curves 1( )uC  and 2 ( )vC  lie on the xy-plane and 1( )uC  is totally contained inside 

2 ( )vC . The normals are calculated as follows [25]: 
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       (16) 

where k is the unit vector in the positive z-direction. 
Now the global curve matching problem can be formulated as a continuous 

optimization problem where the objective is to maximize the sum of the function f 
over the entire parameter domain of the curve 1( )uC , i.e. [ , ]low highu u u∈ [25]:  

 
( ) ( )1 2

2

1 2

( ) , ( ( ))

( ) ( ( ))

high

low

u

u

u v u
Maximize

u v u−
∫

N C N C

C C
JJJJJJJJJJJJJJJJJG          (17) 

Subject to the following constraints: 
  

1. So that 2 ( ( ))v uC  is a valid re-parameterization, two consecutive ruling 

lines 1 2( ) ( ( ))i iu v uC C  and 1 1 2 1( ) ( ( ))i iu v u+ +C C  should not intersect each other, 

i.e. 1( ) ( )i iv u v u +<    

2. No ruling line 1 2( ) ( ( ))i iu v uC C  should intersect the directrices 1( )uC  and 

2 ( )vC  

 
Note that no initial re-parameterization is specified as a constraint because the 

curves are not open.   
The input curves 1( )uC  and 2 ( )vC  are re-parameterized into approximating 

polygons (or piecewise linear curves). For each polygon, the number and relative 
locations of the vertices are governed by the desired accuracy of approximation. In 
general, the higher the number of vertices, the better is the approximation. Matching 
is established between the vertices of the polygons.  

 

1( )uC  is re-parameterized into a set of (a + 1) points P as follows [25]:  

{ } 0, ,i i a==P p … ; where, 1( )i iu=p C ; 
1 1 1

[ , ]i p h pu u u −∈ ; 1i iu u +< ; 
10 pu u= ; 

1 1a h pu u −=  

 
10 1 0 1( ) ( )pu u= =p C C  and 

1 11 1( ) ( )n a h pu u −= =p C C        (18) 

Similarly, 2 ( )vC  is re-parameterized into a set of (b + 1) points Q as follows:  

{ }
0, ,j j b=

=Q q
…

; where, 2 ( )i jv=q C ; 
2 2 2

[ , ]j p h pv v v −∈ ; 

1j jv v +< ; 
20 pv v= ; 

2 2b h pv v −=  

20 2 0 2( ) ( )pv v= =q C C  and 
2 22 2( ) ( )b b h pv v −= =q C C  

      (19) 

 
Note that the parameters iu ’s and jv ’s are not necessarily evenly distributed in 

their respective domains. Moreover, a and b are not assumed to be equal. While re- 
parameterizing, at every point ip  and jq , the unit normals ( )iN p  and ( )jN q  are also 

calculated. Now the re-parameterized version of the function f in Equation (15) 
becomes [25]:  
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( )
( ) 2

( )

( ), ( )
( , )

i j i
i j i

i j i

f =
−

N p N q
p q

p q
JJJJJJJJJG          (20) 

Therefore, the re-parameterized approximation of the original continuous 
optimization problem in Equation. (17) can be expressed as: 

2
0 0

( ), ( )a b
i j

i j i j

Maximize
= = −
∑∑

N p N q

p q
JJJJJJJG         (21) 

Subject to the following constraints.  
1. So that ( ) ( 1)j i j i< +  is a valid discrete re-parameterization, two 

consecutive ruling lines ( )i j ipq and 1 ( 1)i j i+ +p q  should not intersect each 

other, i.e. ( ) ( 1)j i j i< + .   

2. No ruling line ( )i j ipq  should intersect the polygons, P and Q. 

An approach named Greedy Ruled Line Construction (GRLC) [25] is proposed to 
find a set of ruling lines, RL that maximizes the objective function in Equation (21). 
The underlying principle of the GRLC approach is to construct the set RL by adding at 
a time one ruling line which increases the objective function value the most. At every 
stage of RL construction, the ruling line added to RL is chosen from a set of 
candidates named RL_candidate_list. Each candidate in RL_candidate_list is called a 
maximum valued ruling line ( )iMVRL  which satisfies both constraints 1 and 2 in 

Equation (21). Construction of RL continues until all the vertices on both polygons P 
and Q are connected by at least one ruling line. It can be proved that this greedy 
approach guarantees the global optimal solution.  

A maximum valued ruling line ( )iMVRL  represents the best match for a given 

vertex i ∈p P . If the ruling line i jpq  satisfies both constraints in Equation. (10) and at the 

same time so happens that { }
0, ,

( , ) max ( , )i j i j j b
f f

=
=p q p q

…
 is true, then i jpq  is 

designated as the iMVRL . Since at every stage, a new ruling line is added to RL, the 

iMVRL  may not always remain the same for the same ip . This is the reason why the 

RL_candidate_list is emptied and reconstructed at every stage of RL construction. Below, 
the methods are described on how iMVRL  is found while satisfying both the constraints. 

To describe these two methods in the general scenario, it is assumed that iMVRL  is found 

while there are already some ruling lines in RL, none of which has ip  as an end point. In 

other words, GRLC method has already progressed to a stage when iMVRL  will be one 

of the candidates in the RL_candidate_list and will be added to RL set. 
The first constraint is met by a visibility checking method as defined below.  

Definition: Visibility – A point j ∈q Q is visible to ip  if the ruling line i jpq  does not 

intersect any edges of either of the polygons P  and Q .  
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While finding the iMVRL  of the given vertex ip , only those vertices in Q  are 

considered which are visible to ip . A function IsVisible( ,i jp q ) is defined which 

returns true only if jq  is visible to ip . Let iV  be a subset of Q so that all vertices in 

iV  are visible to ip [25]:  

{ }
0, ,

( , )i j i j
j b

true
=

= ∈ =V q Q IsVisible p q
…

       (22) 

Fig. 7 shows how a ruling line i jp q enters RL. Fig. 7(a) explains Equation (22) 

where the vertex   is connected by broken ruling lines to all the vertices in  iV . The 

iMVRL   is one among the broken lines, but not identified yet. 

 In order to meet the second constraint in Equation (21), all vertices in P are 
traversed in counterclockwise direction starting from 1i+p  and ending at 1i−p . While 

traversing, let i′p  and i′′p be the first and last connected vertices encountered, i.e. 

i j′ ′p q  and i j′′ ′′p q  are two ruling lines already in RL. Then all the ruling lines 

;i j j j j′′ ′≤ ≤pq  satisfy constraint 2.  

A function IsValid( ,i jp q ) is defined which returns true only if j j j′′ ′≤ ≤ . The 

function is so named because each ( ), ( )j i j j i j′′ ′≤ ≤ , qualifies to represent the discrete 
version of the valid re-parameterization ( )j iv . Let, iR  be a subset of Q containing all 

,j j j j′′ ′≤ ≤q . 

{ }
0, ,

( , )i j i j
j b

true
=

= ∈ =R q Q IsValid p q
…

       (23)  

Now iMVRL  can be found from the set i i∩V R as shown in Fig. 7(b). If 

i i jMVRL = pq  then, by definition of iMVRL , the condition 

{ }( , ) max ( , )
j i ii j i jf f ∈ ∩

⎛ ⎞= ⎜ ⎟
⎝ ⎠q V Rp q p q holds.  

ip

P

Q Ruling lines in  
(satisfying constraint 1) 

Vi

  

ip

Ruling lines in 
(satisfying constraint 1 

but not constraint 2)

V Ri i but not in  

Ruling lines in both 
satisfying both constraints)

V Ri i and  
(

P

Q

 
i′p

 
i′′p  

j′q

 
j′′q

 
(a)     (b) 

Fig. 7. (a) Visible vertices to ip satisfying first constraint (b) finding ruling lines satisfying 

both constraints 1 and 2 [25] 
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Since both polygons are closed, no initial match conditions are specified. The 
greedy approach constructs the RL_candidate_list. Among all candidates in 
RL_candidate_list, the one with the maximum value is chosen and added to RL. The 
end vertices of this ruling line are marked as connected. Then the candidate set is 
emptied and a fresh set is reconstructed excluding all the ruling lines that are already 
in RL. Again the “best” one is chosen from the set and stored in RL. This is performed 
repeatedly until all the vertices of both polygons are connected by at least one ruling 
line. 

It is possible that there can exist one-to-many matching of the vertices. This 
happens when the curvature of the curves differ significantly at the vertices. It is 
neither intuitive nor visually pleasing that one vertex on one directrix matches with 
many points on the other directrix. This means that while material blending, one 
vertex of the source will metamorphose into an arc on the target and vice versa. 
Therefore, a vertex insertion method is developed that “spreads out” the ruling lines 
so that all ruling lines have one-to-one correspondence. This is achieved by inserting 
more vertices near the vertex with degree more than one and connecting each of them 
with the ruling lines as shown in Fig. 8. 

If ip  and 1i+p  are two consecutive vertices onP , both of which may have degrees 

more than one. Let, out of all the ruling lines connected to ip , the line i jpq has the 

highest function value. Similarly, out of all the ruling lines connected to 1i+p , the line 

1i j k+ +p q has the highest function value. Therefore, the k – 1 points between jq  and 

j k+q  have to be detached from their connections on P and be relocated because the 

two ruling lines i jpq  and 1i j k+ +p q  are the locally best matches. The points 

1 1, ,j j k+ + −q q…  were connected to either ip  or 1i+p  because there were no other points 

available in-between.  

ip

1i+p

jq

j k+q

ip
i k+p

jq

j k+q

 

Fig. 8. The ruling lines with highest function value are identified and inserted 

The insertion of points between ip  and 1i+p  are done according to proportional 

parametric increments of jq  and j k+q . Let the parameter associated with j l+q  be 

j lv + , 0, ,l k= … . Since k – 1 vertices are going to be inserted between ip  and 1i+p , 

index i+1 will increase to i+k. Let the parameters associated with ip  and i k+p be iu  

and i ku + , respectively. Then k – 1 points are sampled from C1 between ip  and i k+p  

as follows.  
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1( ) ( ) ; 1, , 1where, j l j
i l i l i l i i k i

j k j

v v
u u u u u l k

v v
+

+ + + +
+

−
= = + − = −

−
p C …      (24)  

Using the proportional parameter increment approach of inserting points is only a 
discrete way of re-parameterization only. The vertex insertion is done in two stages. 

The first stage involves marching along 1C  and inserting points using the equation 10. 

Later, at the second stage points are inserted on 2C  using the same procedure 
discussed above. 

After the material governing features are matched, the next step is to find the 
material composition function or material feature between the material governing 
features. 

6   Determining Material Features  

After establishing the object model and the object-material constraints, the material 
features need to be established. The task of establishing the material features is 
considered to be an optimization problem because only the optimal material feature 
will ensure that all the requirements are met and the objective achieved. The design 
methodology is depicted as a flowchart in Fig. 9. 

START

INPUT: Geometry model, functional 
requirements and primary materials

)s(yfitnedI
and g

features GFmaterial governing 
enerate loft volume(s) using them as generators

Discretize the loft volume(s) into cells; 
assign constant material composition in each cell

OUTPUT: Discrete material composition value for each cell. 
Fit a B-spline curve (1D) or surface (2D) through the points to 

obtain continuous material feature

END

Construct a global optimization problem with the 
cell material compositions as design variables

Solve the problem using a suitable technique

 

Fig. 9. Flowchart of overall design process [24] 
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The actual design variables are the control points of the material variation function 
for each material. However, finding out all the control points simultaneously is too 
computationally expensive to be considered as a part of an interactive design system. 
Therefore, the lofted volume(s) are discretized into a set of disjoint cells along the 
lofting directions. All points in a cell are assumed to exhibit a constant property 
requirement. Fig. 10 shows an example of cell formation along the lofting direction t 
for the pressure vessel model mentioned in section 4. Details of cell generation can be 
found in our earlier work [23, 24]. 

Discrete cell, Lj

 

Fig. 10. Lofting and cell formation of pressure vessel model 

The material composition in a cell should be such that the resulting material 
property can meet the requirement at that cell. Therefore, the design variables are 
denoted as ]V[DV j= ,  where, jV  is the material fraction vector for the j-th cell jL  

and is given as  

[ ]T
j

n
jjjj vvv

ε,...,0

)()2()1( ...,,,V
=

=          (25) 

and 

2,1 jjV = [ ]T
jj

n
jjjjjj vvv

;...,,02;...,,01

)(

2,1

)2(

2,1

)1(

2,1
...,,,

φε ==
       (26) 

for 1-D and 2-D, respectively.  After the cells are formed, the design problem is 
formulated as an optimization problem as follows [23]:  

Min (Max): Objective function (DV)=f  
Subject to:  
(i) All material volume fractions must add to unity. 

 ;1
0

)( jv
n

k

k
j ∀=∑

=

 

(ii)  Inequality constraints:  
 gpGp ,,10)( "=≤DV  

(iii)  Equality constraints: 
 hqH q ,,10)( "==DV  

There are g  numbers of inequality design constraints gGG ,,1 "  and h  numbers of 

equality design constraints .,,1 hHH "  Examples of design constraints include upper 

limit of weight of object, minimum failure stress etc.  
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The optimization problem can be solved using a suitable solving algorithm or a 
commercial solver. In case of two materials 1M  and ,2M  incremental search 

algorithm can be implemented to solve the problem [23]. 
After the optimization problem is solved, the optimum values of ]V[ j  for each cell 

are known in the 1-D case. To represent the material variation as a continuous 
function, B-spline curves are fitted through each set of values of )(k

jv . There will be 

one curve for each material .kM  A curve fitting algorithm, adapted from [17], is 

given in our earlier paper [23]. Similarly, for the 2-D case, the optimum values of 
][V

21 , jj  will be obtained after solving the optimization problem. To represent the 

material function as a continuous function, a B-spline surface is fitted through each 
set of values of )(

, 21

k
jjv . There will be one surface for each primary material. Algorithm 

for surface fitting can be found in [17, 23]. 
The resulting object model obtained at the end of the process is called an initial 

model. Unlike the initial model which has the optimized features for a specific set of 
design constraints, the variants will not necessarily be the most suitable models for 
their respective sets of design conditions. Therefore, it might be required to construct 
and solve a new optimization problem to establish the material features of a variant. 

However, since the variant model already has material attributes, the re-
optimization will take less time than it did for the initial model. This is because the 
optimization process for the initial model starts form scratch where the input model 
had no material attribute at all. In case of re-optimization of the variant model, the 
existing material feature will represent an upper bound (in case of minimization) or a 
lower bound (in case of maximization). Therefore, the variant optimization process 
will be faster. This property of feature based modeling and design is very useful in 
case a large number of similar shaped models need to be created at an interactive rate.  

7   Implementation and Examples  

The proposed design methodology is implemented on a PC using Microsoft Visual 
C++. OpenGL library functions have been used for displaying the model along with 
their material variations.  

Example part I is the simplified heterogeneous pressure vessel mentioned in 
Section 4. An optimization problem is modeled where the objective is to minimize 
heat flow H from inside to outside of the vessel and the constraints are to withstand 
the stresses in each cell. Two materials 1M and 2M are chosen as primary constituents. 

1M has low heat conductivity and low mechanical strength. Material 2M  has high 

mechanical strength but has high heat conductivity.  
The incremental search technique is used for solving the problem. Smooth B-spline 

curves are fitted through the points which represent the variation function )1(v  for 
material 1M as shown in Fig. 11. The first and last control points of the B-spline 

curves are constrained to be on material governing features GF1 and GF2, 
respectively. Fig. 12 shows the optimum heterogeneous model.   
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Fig. 11. Material variation curves for Example part I. [24] 

(b)(a)  

Fig. 12. Example part I: optimized heterogeneous pressure vessel, (a) initial model and (b) 
cross section of initial model [24] 

After the optimal heterogeneous model is designed, variant models are created by 
modifying the features as shown in Figs. 13(a) and 13(b). In Fig. 13(a) the variant 
model is cylindrical shaped where the wall thickness and the height have been 
changed keeping the material feature unaltered. In Fig. 13(b), a free-form model is 
obtained by repositioning some of the geometric feature control points from Fig. 12, 
while maintaining the material variation profile. As the geometry control points are 
repositioned to change the shape, the material feature control points automatically 
reposition themselves to maintain the feature relationships.  

Example part II is a mold with a freeform shaped cavity, as shown in Fig. 14(a). 
The molten metal is poured at a high temperature TH and high pressure PH. The 
outside surface of the cube is exposed to coolant which is at low temperature TL and 
pressure PL. The design requirement for the part is that the mold must dissipate the 
heat quickly to allow for rapid cooling of the molded part while withstanding the 
thermo-mechanical stresses developed due to the pressure and temperature gradients. 
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(b)(a)  

Fig. 13. Variant models of Example part I, (a) cylindrical and (b) free-form [24] 

Discrete cells, Lj

(a)

(b)

Freeform shaped mold 
cavity at high temperature
 and high pressure T  PH H

Cavity surface - 
governing feature GF1

Cube surface - governing feature 
exposed to coolant temperature  and pressure 

GF
T P

2

L L

Loft 
direction, t

 

Fig. 14. (a) Example part II: mold with a freeform cavity and (b) blending and cell formation 
[24] 



 Feature-Based Material Blending for Heterogeneous Object Modeling 163 

 

Fig. 15. Smooth B-spline curves representing material variation for Example part II [24] 

Two candidate materials, M1 and M2 are chosen. M1 has a high mechanical strength 
but low heat conducting properties whereas heat conductivity of M2 is higher. An 
optimum material variation needs to be calculated to achieve the design requirements.  

The material governing features are identified as the cavity surface (GF1) and the 
outside cube surface (GF2) and the lofting direction t is from GF1 outwards to GF2 as 
shown in Fig. 14(a). All the stress components are the same as Equations (8) and (9). 
A sectional view of the lofting and cell generation is shown in Fig. 14(b). An 
optimization problem is modeled with the design variables as explained before. 

After solving the problem, smooth B-spline curves are fitted to represent the 
material variations which are shown in Fig. 15. The output design with material 
variations is shown in Fig. 16.  

The solid model of example part III is shown in Fig. 17(a). Property requirement at 
governing features GF1 and GF2 is different from the property requirement at 
governing features GF3 and GF4. Therefore, this is a case of 2-D material feature 
design. Two loft volumes are generated in the parametric directions s  and ,t  
respectively, and the cells are shown in Fig. 17 (b). 

M1

M2  

Fig. 16. Example part II: heterogeneous mold [24] 
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(a) (b)

GF1

GF2

GF3

GF4 s

t

Discrete cells, 
21 , jjL

 

Fig. 17. (a) Example part III: Freeform solid object and (b) lofting and cell formation [24] 

s
t

v(1)

v(2)

 

Fig. 18. Smooth B-spline surfaces representing two dimensional material features for Example 
part III [24] 

s

t

 
Fig. 19. Example part III: heterogeneous freeform solid object model [24] 
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Two different materials M1 and M2 are selected as primary materials. M1 satisfies 
one set of property requirement but doesn’t satisfy the other whereas the reverse is the 
case for M2. The design variables are same as in Equation (26). Solution of the 
optimization process gives the optimum values of the design variables. Two fitted B-
spline surfaces that represent material features are shown in Fig. 18. The solid model 
with continuous material variation is shown in Fig. 19.  

8   Conclusions 

In this paper, feature-based design methodologies have been developed to the design 
freeform heterogeneous objects. Freeform (sculptured) object features has been used 
to model and represent heterogeneous objects and material features. A new method is 
developed to generate matching lines between two material governing features 
(directrices. Each connecting line represents a match between two points on the 
directrices. A new method named Greedy Ruling Line Construction (GRLC) is 
developed to match the directices such that their material features (properties) are 
blended each other along their matched normal direction. Given the initial object 
geometry, property requirements and candidate materials, a suitable optimization 
problem is formulated and solved to construct the material features. Under the 
assumption that the property requirement is given as a function of parametric distance 
from a material governing feature, this methodology will generate valid feature based 
objects where all the features relations are retained. Variant models are created easily 
by changing material or geometric features.   
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Abstract. In this paper, we propose a framework for modeling and
deforming heterogeneous volumetric objects defined as point sets with
attributes. We propose to use constructive hypervolume objects, where
the function representation (FRep) is used as the basic model for both
object geometry and attributes represented independently using real-
valued scalar functions of point coordinates. While FRep directly defines
object geometry, for an attribute it specifies space partitions used to
define the attribute functions.

In this model, an extended space mapping is applied in a geomet-
ric space extended by a functional coordinate to transform volumetric
objects. We describe in this chapter three different applications of this
mapping. First we propose an approach to constructive modeling of 3D
solids defined by real-valued functions using B-spline volumes as primi-
tives. A 4D uniform rational cubic B-spline volume is employed to define
a 3D solid, which can serve as object geometry or as a space partition
for defining volumetric attributes.

Second application of the extended space mapping is deformation of an
existing object. We propose to define a new node in the FRep tree based
on shape-driven deformations. These deformations can be controlled by
additional shapes (points, curves, surfaces, or solids) and can be applied
to object geometry and attributes during any modeling step.

The last application is a new operation for a locally controlled meta-
morphosis between two functionally defined shapes. To implement this
operation, a set of non-overlapping space partitions is introduced, where
the metamorphosis occurs locally. The sequence of local metamorphosis
processes is controlled by a specific time schedule. The definitions of the
partitions, of the time schedule, and finally of the local metamorphosis
operation, are described and illustrated by examples.

1 Introduction

Volume modeling has become an important research topic. In contrast to homo-
geneous volumes with uniform distribution of properties, a heterogeneous volu-
metric object has a number of attributes assigned at each point and varying in 3D
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space. It is not necessary for an attribute to be continuous. Heterogeneous volu-
metric objects can be modelled as 3D point sets with non-uniform distribution
of attributes of an arbitrary nature (photometric, material, physical, statistical,
etc.). Heterogeneous objects are considered in such different areas as CAD/CAM
and rapid prototyping of objects with multiple materials and varying material
distribution, representing results of physical simulations, geological and medical
modeling, volume modeling and rendering.

Different models based on the boundary representation [24,23], volumetric
[10,34,30], and function-based constructive techniques [35] have been proposed
for heterogeneous objects. As it was shown in the mentioned publications, real-
valued functions serve well for modeling both geometry and attributes. The
work presented in this paper is based on the function representation, FRep for
short [37], and the generalised constructive hypervolume model [35,36] (see other
chapters), which supports uniform constructive modeling of point set geometry
and attributes using real-valued functions of several variables.

Tradionnally, only the constructive approach is used in the creation of FRep
models and contructive hypervolume models. Building a constructive tree to
generate an object is usually a time-consuming and sometimes difficult process.
Usually, a complex shape contains both regular parts that can be easily decom-
posed into a set of primitives, and some other parts more difficult to decompose.
An alternative to the constructive approach is the free-form design. With this
general method, parts that can be hardly decomposed into elementary elements
are modelled directly, using a sculpting approach. Various sculpting metaphors
have been proposed, often referred as clay sclupting in the litterature [15]. In
those modeling environements, artists do not manipulate polygons but rather
add or remove material at different scales until the desired shape is obtained.
A different aspect of free-form modeling consits in deformations, where start-
ing from an initial object, it is deformed by various operations, such as twisting,
bending, tapering among severals. Another way to create new shapes and anima-
tions can be achieved by metamorphosis. Given two initial functionnally defined
shapes, the metamorphosis operation transforms the first shape into another
according to a dynamic time variable.

Those approaches are based on the same mathematical framework called ex-
tended space mapping. In the next section, we first recall its definition and show
how it naturally includes sculpting, modeling by deformations, and metamor-
phosis. Later sections respectively illustrate the extended space mapping with
a primitive based on the trivariate B-spline, then a set of shape driven defor-
mations, and finally local metamorphosis. In each section, we propose a short
survey of exising works, a primitive or operation definition, and finally applica-
tion examples.

2 Introduction to Extended Space Mapping

The concept of extended space mapping introduced in [43] is used as the under-
lying framework for modeling complex heterogeneous objects. A space mapping
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    (a)                (b)           (c)                                        (d) 

xx x

ξ ξ ξ

x

ξ

f(x) S1(x) S2(x) S3(x)

Fig. 1. Extended space mapping. (a) 1D point set (bold line) is defined by a curve
ξ = f(x), and the projection of its positive part onto the x-axis. (b) Modification
using function mapping (the function f is modified).(c) Modification using space map-
ping (the x coordinate is scaled non-linearly) (d) Heterogeneous object with attribute
functions added to the model. A different attribute corresponds to each function Si.

establishes a one-to-one correspondence between points of a given space and, if
applied to one point set in the space, it changes this set to a different one. A
mapping can be defined by the functional dependence between the new and old
coordinates of points. A formal definition of the extended space mapping can
be found in [43]. It generalises both space mapping and function mapping (i.e.,
manipulations done on the defining function values) by considering an extended
space with geometric coordinates and the additional functional coordinate.

Let us discuss the example given in Fig. 1. The intention is to model a 1D
point set with attributes, i.e., a segment along the x-axis. Let f be a real-
valued function of one variable such as ξ = f(x). The inequality f(x) ≥ 0
defines a segment. At the same time, a curve is defined in the (x, ξ) plane. This
plane is called an extended space, because it has a geometric coordinate and an
additional function coordinate. Fig. 1a shows such a curve and the corresponding
1D segment at some modeling step. The function f(x) is drawn in black, and
its corresponding point set in as a bold line. Different transformations can then
be achieved, and are called under the general term extended space mapping. For
instance, if a translation is applied to the curve, the extended space is mapped
onto itself, and thus defines an extended space mapping. As said, extended space
mapping combines two main families of mappings, namely the function mapping
and the space mapping. The first one gathers transformations that occur at the
function level (see Fig. 1b), and the second type stands for transformations at
the coordinate level (see Fig. 1c).

In a similar way, extended space mappings can be used for attribute functions,
as Fig. 1d shows. The function Si(x) defined in the extended space corresponds
to an attribute Ai. In this example, the function S3 is similar to the function used
to define the point set, and the functions for the other attributes are arbitrarily
defined.



170 B. Schmitt, A. Pasko, and C. Schlick

As point sets and the space partitions for attributes are defined in a similar
way, it naturally appears that they can be modelled in a uniform manner. The
sculpting paradigm we propose can thus be used for both of them. Then, in
the remaining part of this chapter, we use the term object to identify without
any difference either the geometry of the point set or its spacepartitions with
attributes.

In the next section, we propose to model an object using a B-spline function
using only the function mapping. Then, in the following sections, the space
mapping will be used to define deformations of functionally defined objects.

3 Volume Sculpting Using Trivariate B-spline Primitive

3.1 Previous Works

The term virtual sculpting was first introduced in [33], and several works have
been conducted in this direction. An object is sculpted while adding or removing
some material at the desired location. A very good survey on the existing sculpt-
ing techniques can be found in the PhD thesis [15]. Several existing tools are
dedicated to a surface manipulation only, i.e., polygonal [33,5] and parametric
[18,21].

In [20,51], an environment in which a 2D painting scheme is proposed to add
or to carve an existing object, and in [1,16] a 3D interaction is proposed using
a haptic device to sculpt the object. Those methods rely on discretely sampled
function, resulting into a 3D grid of uniform voxels, called voxmap, containing
a function value at each node of the grid. The major advantage is the constant
time evaluation procedure, i.e., a trilinear interpolation, used to visualise the
object after a modification. Another approach of the sculpting metaphor using
real-valued functions has been proposed by Elber et al. [41] and by Schmitt et
al. [46]. In those works, the object is represented as a zero set of a trivariate
B-spline [41] or trivariate Bézier function [32,46].

A valuable approach would be to combine constructive modeling and volume
sculpting, because both approaches contain useful features. To combine these ap-
proaches, one has to define a primitive that can be both sculpted and included in
a constructive tree [47]. To add a new primitive to a FRep tree, one has to verify
the continuity of the defining function (at least C0 continuity everywhere in the
space). The characteristic functions used in [20,51,1,16] are C0 continuous as the
representation is piecewise linear. In the three first works, the grid resolution is
fixed making the sculpting process difficult. In the latter one, [16], the sculpting
process can be achieved at any level of resolution, and results in a powerful tool.

In [41], the sculpting area depends on the space where the parametric function
is defined, i.e., it is restricted within the boundary of the parameter space of the
trivariate B-spline function. Therefore, such definition makes it difficult to use
the sculpted object in another context, and especially to use it as a constructive
primitive. We propose hereafter a similar approach for trivariate Bézier functions
as in [32,46] and extend it to B-spline functions as in [45,47] to satisfy the



Constructive Hypervolume Modeling Using Extended Space Mappings 171

continuity requirement induced by the FRep model and then propose to apply it
to define both geometry and attributes in the constructive hypervolume model.

3.2 Trivariate B-spline Primitive

To create FRep objects, we use a sculpting scheme close to the one proposed
in [41,45], where uniform cubic trivariate B-spline functions are used. The basic
definition of the B-spline is similar, but as it will be shown in the next subsec-
tions, additional properties are required in order to be able to provide a new
primitive for a FRep constructive tree.

Primitive Definition. Let the defining function f be a trivariate cubic uniform
B-spline function defined in a parametric space by a set of l × m × n scalar
coefficients λijk , called control coefficients or control points:

f(u, v, w) =
l∑

i=0

m∑

j=0

n∑

k=0

Ni(u)Nj(v)Nk(w)λijk (1)

where N(t) are the cubic B-spline basis functions [14] (or blending functions)
defined over a uniform knot vector, and u, v and w belong to the parametric
space [0, 1].

The control points λijk are regularly placed in the space to insure that along
each axis the following equalities are verified (using the property of the cubic
B-spline basis functions) :

⎧
⎨

⎩

fx(u, v, w) = u
fy(u, v, w) = v
fz(u, v, w) = w

(2)

The tensor product used for the B-spline definition will be applied only to the ξ
coordinate of each control point. The resulting 3D point set will be defined as :

G = {(x, y, z)/f ξ(x, y, z) ≥ 0} (3)

One can recall the example given in Fig. 1, and consider the curve S in the
extended space as a traditional B-spline curve. Then, to model a 1D object, one
has to use a B-spline curve defined by a set of 2D control points. By analogy,
to model a 3D object, the use of 4D control points is required. While the first
three coordinates are used to locate a control point in the space (i.e., the usual
xyz coordinates), the fourth coordinate ξ contains the scalar coefficient.

Functional Clipping Definition. To insure that the B-spline primitive re-
mains negative and decreasing outside the parametric space, we use the func-
tional clipping defined in [46]. We can force the trivariate B-spline function, or
more generally any functions, to become negative outside a certain domain, i.e.,
the parametric space in our case. This space can be considered as a unit cube
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with the use of some simple scaling operations. Then, the B-spline function has
to be negative outside this cube.

The functional clipping is defined as follows. Let & be the intersection oper-
ation defined with the R-function as:

f(x) & g(x) = f(x) + g(x) −
√

f2(x) + g2(x) (4)

and let ω be the defining function of the unit strip of one variable:

ω(t) = t(1 − t) (5)

The defining function of the unit cube can be expressed as follows:

Ω(u, v, w) = ω(u) & ω(v) & ω(w), (6)

The inequality Ω(u, v, w) ≥ 0 defines a closed subset, which corresponds to the
parametric space.

The functional clipping can now be defined as the intersection of this subset
with the trivariate B-spline function :

Fclip(u, v, w) = F (u, v, w) & Ω(u, v, w), (7)

The application of the functional clipping insures that outside the parameter
space, i.e., the unit cube, the trivariate B-spline function will remain negative.
Furthermore, the functional clipping provides a distance property of the trivari-
ate B-spline function outside the domain, but does not change the solid primitive.

3.3 Geometry and Attributes Modeling and Visualisation

We have implemented an interactive modeller on the base of the proposed prim-
itive. Interactive rates are obtained as the B-spline functions are evaluated in
constant time, due to the local support of the basis functions.

To visualise the object, we polygonise the iso-surface defined as F (x, y, z) = 0,
where F is a function evaluated using the constructive tree. Many different al-
gorithms have been proposed for this task. We choose the polygonalisation al-
gorithm based on hyperbolic arcs proposed in [38]. As in the classical Marching
Cube algorithm [28], an exhaustive enumeration of the 3D grid cells is applied,
but instead of using a look-up table to generate the polygons belonging to a
given cell, this algorithm uses the trilinear interpolation inside the cell combined
with the bilinear interpolation on the cell faces, and resolves topological ambigu-
ities using hyperbolic arcs. The strength of the algorithm is that the polygonal
model it generates is topologically correct without unexpected holes. In our im-
plementation, with the use of this algorithm, the polygonal surface is updated
in real-time, which leads to an interactive modeling tool.

Fig. 2 shows a snapshot of the modeling tool we developed, in grey scale.
In this environment, to model a shape using a trivariate B-spline function, one
can use a 3D cursor to select a position in the set of control points. To help
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Fig. 2. Snapshot of the user interface. (Left) The iso-surface is polygonised in real-time
while modifying the scalar coefficients of the trivariate cubic B-spline function using the
3D cursor. To help the navigation, each face of the bounding cube is coloured according
to a colour scale (Right) and to the function values, depending on the location of the
cursor.

Fig. 3. Complex heterogeneous object modelled using only trivariate B-spline prim-
itives. (Left) Complete model of a light-bulb; (Right) Zoom on the filament of the
light-bulb.

the artist while modeling, we chose to map the parameter space on a cube
with a front face culling. Each visible side of the cube is coloured according
the function value of the B-spline. A ”heat” colour scheme is employed, where
the blue gradient (”cold”) corresponds to negative function values, and the red
gradient (”hot”) corresponds to positive values. In Fig. 2, different grey scales
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Fig. 4. Interactive modeling applied to texture a BRep object. (Left) Several B-spline
primitives are used to define the space partitions. (Right) The corresponding textured
BRep object rendered using a surface ray-tracing engine.

are used to represent those colors; a light grey color for positive values and a
darker grey color for negative values. Green colours (half toned greys in the
figure) mean that the function values are around zero. The aim of this colour
scheme is not to provide the exact function value, but rather an approximation
to help the user to navigate in the set of control points.

Using this modeling tool, and thus the proposed primitive, one can model 3D
objects to be used as both object geometry and space partitions for attributes
modeling, as proposed in [45]. An example is given in Fig. 3, using the opacity as
an attribute. The object is a light-bulb where the geometry is defined using only
B-spline primitives. Twisting operations where applied to the mouthpiece and
to the filament, which are two different B-spline primitives. The space partition
for the attributes is simple, as the constructive geometric tree coincides with the
attributes one.

In the case of a geometric model other than FRep, the only difference in
the modeling process is that the geometric model should be imported first, as
Fig. 4 shows. In this example, a standard B-rep object (the polygonal ”Stanford
Bunny”) has been loaded, and different space partitions were modelled using the
B-spline modeller. In this example, several cubic B-spline primitives were used
to create space partitions for photometric attributes (colours and other shading
parameters). While modeling, simple colours are used as in Fig. 4(left) to show
which partition a vertex belongs to. One can then export the object to POV-Ray
[39] or other formats for rendering. For each vertex defined in the B-rep model, a
tree traversing procedure is executed, and depending on the partition the vertex
belongs to, a texture index is defined.

After the modeling process is finished, the object with FRep geometry can
be saved as a HyperFun script to be used later by other components of the Hy-
perFun software environment [40]. HyperFun is a high level language supporting
exchange of FRep and hypervolume models. The proposed trivariate B-spline
primitive has been included in the FRep library of HyperFun. A HyperFun
script can also be used to save space partitions for attributes.
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4 Deformations in the Constructive Hypervolume Model

4.1 Previous Works

One of the first deformation scheme, called warping, was proposed in [33]. Given
a polygonal surface, a vertex is selected, and moved towards the outside of the
object. Neighbour vertices of the mesh are then displaced according to a dis-
tribution function depending on their distance to the displaced vertex. Another
technique, called FFD [49,11] which stands for Free-Form Deformation, embeds
the object to be deformed into a rectangular volume defined using a control
point lattice. Then, while moving the control points, the embedding volume and
the embedded object are deformed. Several extensions have followed, namely
EFFD for Extended Free-From Deformation [12], where the embedding volume
is replaced by some more complex one, or the RFFD (Rational Free-Form De-
formation), where another degree of freedom is provided while adding a weight
factor to the control points of the lattice. One of the last extensions of the FFD
model is presented in [29], where a subdivision volume is used to embed the
object.

Several other deformation techniques exist. For instance, instead of embedding
the object into a volume, an axis can be defined in the object. Then, as one
deforms the axis, the object deformation follows. The axis can be a polyline
[33,25], a Bézier curve [9] or even a Bézier surface [31]. Other approaches to
deformation include the ”simple constrained deformation“ using ellipsoids Scodef
[7,8,3], and its extension with generalised metaballs [22], the ”implicit free-form
deformation“ IFFD [13], and the ”Wires“ model [50].

Control of 2D image deformations using feature shapes (points, segments) was
described in [4]. Similar approaches were proposed independently for controlling
3D deformations [44,42] and 3D metamorphosis of homogeneous volumes [26].

4.2 Deformations in the FRep Model

Most of the techniques for deformations presented above can not be directly
used in constructive modeling. Indeed, those techniques are applicable only to
a polygonal surface, as they are defined using a forward mapping. Even if some
deformation tools deform the whole space using a function from �3 → �3, such
as in [13,3], they are applied directly to the vertices of a polygonal surface.

In [46], the constructive approach and the volume sculpting approach were
combined using the unifying FRep model. In this section, we describe a new
generalized deformation node for the FRep tree data structure. The goal is to
provide the possibility for the user to model an object without the traditional
separation between the constructive approach, the sculpting process, and the
deformation steps. Usually, the modeling scheme is as follows: first one models
an object in some way, and then uses deformation tools to obtain the desired
shape. As most of the existing tools for deformations are using forward mapping,
once the object is deformed, one can hardly return to the constructive modeling
step, and combine the existing object with another one.
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In order to be able to switch from the constructive modeling step to the
deformation step whenever it is needed, one solution is to define the deformation
using inverse mapping and to use it as an operation node in the FRep tree. To
calculate the inverse mapping from the forward mapping of the previous works
is a very difficult operation, and is even sometimes impossible. A preferable
solution is to define a new deformation node from the scratch. Of course, several
similarities can be found with the previous works, and we used general ideas
for defining this new node. But one has to keep in mind that the definition we
propose is based on inverse mapping, and thus, even if the visual result of the
deformation is close to existing deformations, the underlying idea is different.

Non-linear deformation nodes already exist in the FRep tree. One can easily
twist, taper, or stretch an object along an axis. These deformations are based on
the work presented in [2], but the set of available deformations is quite limited.
A general framework for deformations in the FRep model has been proposed in
[43], where the extended space mapping was defined. In [44], deformations were
defined using point-controlled space mapping, but it had a too global character
due to the interpolation with radial-basis functions. Our goal is to provide local-
ized and intuitively controlled deformations with a general uniform definition.

4.3 Shape Driven Deformations

Simple Deformations Using Space Mapping. In this subsection, we present
the underlying idea of deformations using space mappings. Let us first consider a
simple translation. Let f be a defining function of some 2D geometric object (Fig.
5a), and T a translation vector defined as (dx, dy). Then, the inverse mapping
for this transformation is defined as:

T : f(x, y) → f(x − dx, y − dy) (8)

This operation is globally applied to the entire object as dx, dy are constants
(Fig. 5b). Now, let us define the deformation by non-linear space mapping. Con-
sider the same 2D object and the displacement of a point A towards a point
A′. The variables (dx, dy) become functions of point coordinates. To define a
local deformation centred at the point A, we need to satisfy the two following
requirements:

– functions (dx, dy) have maximum values at A′.
– (dx, dy) drop uniformly to zero when (x, y) is far from A′.

To satisfy these requirements, dx and dy have to become two bell-shaped
functions. We propose to use the following functions for dx(x, y) and dy(x, y):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ifγ ≤ 1
dx(x, y) = e−γ2 × (xA′ − xA)
dy(x, y) = e−γ2 × (yA′ − yA)

else
dx = 0
dy = 0

(9)
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where:

γ2 =
(x − xA′)2 + (y − yA′)2

r2 (10)

As it can be observed, the displacement is maximum when the considered point
is placed at A′ (Fig. 5(c)). We explicitly set the displacement to zero when γ
is greater than one. This insures a localised deformation that depends on the
size of the curve “bell”. Note that the point A is arbitrarily selected, and thus,
a space mapping can be defined for any given point in the space. The function
γ(x) is similar to the Euclidean distance function.

The parameter r is a real value given by the user, and it defines the area
of influence of the space mapping, (and thus the shape of the ”bell”). Figure 6
shows the deformations corresponding to different values of r in the 3D case. As
it can be seen, different levels of deformation, local or global, can be obtained.
The base shape is an ellipsoid. Each row in the figure represents a different value
of the r parameter. The first column represents the effect of the displacement of
a single control point inside the object, and the second column represents the
displacement of the control point outside the object.

Let us illustrate an application of such a mapping to a constructive hypervol-
ume model. In Fig. 7(left), the geometry is defined as a single semi-transparent
sphere. The additional space partition for the attributes is defined as a union of
four smaller spheres. The attributes of these four spheres of the space partition
are constructed as successive fully opaque red and green layers. Then, two space
mappings are defined in order to deform the object (shown by the arrows). Lo-
cated along the vertical axis and inside the geometric sphere, two control points
of the non-linear space mapping are moved vertically towards the outside of the
object. In the case of the upper point, the defined space mapping is applied both
to the geometry and to the space partition for the attributes. As one can see, the
two upper internal spheres are also deformed, and the red and green colour strips
follow the deformation. We choose deliberately to apply the deformation only to
the two upper spheres. No space mapping was applied to the two lower spheres,
and they remain unchanged, whereas the bottom of the geometric sphere has
been deformed.

The equation 9 can be reformulated as follows:

{
X ′ = X − Δ(X)
Δ(X) = f ◦ γ(X) × (A′ − A) (11)

where X is an input point of the Euclidean space, X ′ is its image after applying
the inverse mapping, A and A′ are the source and the target points of the
deformation.

This definition looks exactly the same as the basic formulation of blobby
objects proposed in [6], where f is a potential function, and γ a distance function.
One can change either the potential function f or the distance function γ to
obtain different behaviors in the deformation. A list of available choices and
results can be found in [48].
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Fig. 5. Simple example of space mapping. (a) The iso-contour of a 2D object is defined
in the xy plane. (b) Deformation of the object using a linear space mapping, i.e., a
constant translation vector T . (c) Deformation of the object using a non linear space
mapping.

Framework for Shape Driven Deformations. Given a source point A and
a target point A′, let us define two special areas corresponding to an area of
influence and an area of projection. The area of influence is defined by a real-
valued function Z̃, and takes value in the interval [0, 1]. The area of projection is
defined explicitly, and can consist in a line segment, a plane or other objects. Let
us denote by H the projection of a given point X on this area. Using the same
notation as in the previous section, we propose to define a general deformation
as follows: {

X ′ = X − Δ(X)
Δ(X) = f(γ(X))Z̃(X)(H − A)

(12)

The use and the influence of each term of this equation are explained in the fol-
lowing sub-sections. The next sub-section illustrates the use of different functions
for the area of influence Z̃, and then different areas of projection are considered.
We suppose that the potential function and the distance function are already
defined.

Area of Influence. In this subsection, our interest is turned towards the func-
tion Z̃ defining the area of influence. It can consist in any shapes, such as a
block, a cone, or any other FRep object. Let Z be the defining function of this
FRep object. Z is a real-valued function, at least C0 continuous, that takes value
in �. To insure that the resulting real value is in the interval [0, 1], we propose
to use the following mapping function:

Z̃(X) =
1
2

(

1 +
Z(X)

√
(ϑ + Z2(X)

)

(13)

The variable ϑ is an important feature in the behaviour of the deformation.
In some sense, it can be compared to the hardness factor as it controls blending
between the deformation area of influence and the initial object. Figure 8 shows
a deformed ellipsoid, where Z is defined as a FRep tree, composed of an inter-
section of a block and a torus. Therefore, the deformation that can be achieved
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Fig. 6. Influence of the para-
meter r in the definition of the
space mapping. An ellipsoid
is deformed using space map-
ping with one control point
displaced towards the inside of
the object (left column) and
outside (right column) with
three different values of the
parameter r.

Fig. 7. Deformation of a constructive hypervolume.
The geometry of the object is defined as a semi-
transparent yellow sphere. Inside, a space partition
is defined as a union of four smaller spheres. Non-
linear space mappings are defined while moving two
points (dark dots and arrows). In the upper part,
the space partition follows the deformation; in the
bottom it is independent.

looks like a torus. To emphasise the influence of the parameter ϑ, three differ-
ent deformations are shown, with different values for ϑ. As one can see, when
ϑ is large, the resulting deformation is close to the area of influence with less
blend, and as ϑ gets smaller, the deformation is smoother and blends more with
the initial object. One important feature is that one can change the topology of
the initial object using the proposed deformation method. None of the existing
methods based on forward mapping can handle this problem.

Despite the topology change, the result is also interesting if one considers
the attributes of the object, i.e., the texture in this case. In the torus example
and for a given ϑ, the result is similar to a blending union of the initial object
and a torus. However one can notice that the texture is stretched along the
deformation.

Extensions to arbitrary deformation directions are straightforward. Consider-
ing the displacement vector AA′, one can apply a set of two inverse rotations
and a translation to obtain the desired orientation and location. Furthermore,
as the area of influence is defined as a FRep object, all the set of available op-
erations and primitives can be combined to define it. These possibilities extend
considerably the set of possible deformations.

Area of Projection. The area of projection increases considerably the set
of available deformations. We consider in the following two areas of projection,
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Fig. 8. Changing the area of influence and ϑ. The Z function is defined as a FRep tree,
composed of an intersection of a block and a torus. From left to right, the ϑ parameter
in the Z̃ function is defined as ϑ < 1, ϑ = 1 and ϑ > 1.

i.e., a plane and a line segment. Furthermore, the proposed examples also con-
sider projections of different natures, respectively a perspective and a parallel
projection.

Given a source point A and a target point A′, one can define a cone of height
AA′, and a plane orthogonal to AA′ and containing A′. The cone is the area of
influence of the deformation, and corresponds to the Z function. For each given
point X , one can calculate its projection H onto the plane. In this example, we
choose a projection similar to a perspective one, where the vanishing point is A,
and H is defined as the intersection of the line AX and the plane. The distance
function is then calculated depending on H (and not A′ as previously). The use
of the area of influence takes now its full meaning. Indeed, if Z is not included in
the definition of the inverse mapping, an infinite deformation occurs. Figure 9a
shows the result of such deformation. The object to be deformed is an ellipsoid.
The source point A coincides with its centre, and the displacement of the target
point A′ is along the vertical axis, z. The area for the projection is defined as the
xy plane, translated along the z axis of AA′. The result is an infinite deformation.
It naturally comes that to cut the unwanted part of the deformation, one has to
define the area of influence Z. Different results can be obtained depending on
the choice of Z. Figure 9b illustrates the previous explanations, as we choose a
cone with axis AA′ for the area of influence, and in Fig. 9c, we choose to replace
the cone by a block.

Instead of considering a plane as the projection area, one can also consider a line
segment. In the example shown in Fig. 10, the initial configuration for the source
and the target points is identical to the previous example of Fig. 9. The difference
comes from the projection area and from the area of influence. The projection area
is defined as a line segment, and we choose to use a parallel projection to map every
point X on it. The area of influence is defined as a convolution triangle. In Fig. 10a,
one can see the initial state, where the object to be deformed is an ellipsoid, the
source and the target points are positioned, as well as the line for the projection,
and the triangle for the area of influence. Figure 10b shows the projection of three
different points of the space, X1, X2 and X3. The three new ellipsoids in the fig-
ure correspond to the distance function (as usual, the internal part of the ellipsoid
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Fig. 9. Shape driven deformation of an ellipsoid. Effect of applying the area of influence.
The area of projection is a plane. (a) No area of influence is defined, resulting is an
infinite deformation. (b,c) The areas of influence are defined respectively using a cone
function and a block function.

Fig. 10. Shape driven deformation of an ellipsoid. Influence of the projection. The area
of projection is straight line. (a) Initial configuration. (b) Parallel projection of some
points. (c) Resulting deformation.

represents distance to centre below or equal to 1). The point X1 is mapped onto
the projection line, parallel to AA′. Its image is H1, but as X1 is located outside
the area of influence, the function Z̃(X1) is equal to zero and X1 will be mapped
onto itself. The second point X2 is mapped onto the line, and its image H2 corre-
sponds to the centre of the ellipsoidal distance function γ. As γ(X2) is lower than
1, and as X2 lies inside the area of influence, the point X2 is mapped to some other
location (close to A to be more precise). The third point X3 emphasises the impor-
tance of the choice of the projection. As we mentioned previously, in this example,
the projection is a parallel one. The point X3 lies inside the area of influence. Its
image generates an ellipsoidal distance field, but as one can see, the value γ(X3) is
greater than one. Thus, the corresponding potential value f(γ(x3)) is equal to zero,
and the point X3 will be finally mapped onto itself. Figure 10c shows the resulting
deformed object.

4.4 Examples

The shape driven deformations can be easily applied to traditional implicit ob-
jects. Nevertheless, the most intriguing results are achieved while using the con-
structive hypervolume model. Indeed, if the proposed deformations are applied
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Fig. 11. Self intersecting deformations.
An ellipsoid is deformed using a spiral
curve. Several intersections between the
original shape and the deformation occur.
The left picture shows the inside of the
deformed object.

Fig. 12. Deformations as carving tool.
(Left) A block is carved according to
a path defined a long a curve. (Right)
An additional global deformation is then
added, and the carving follows it.

Fig. 13. Space mapping as the new node
of the FRep tree. Several deformations
are applied to an ellipsoid, which then is
used in a FRep tree (intersection oper-
ation with a cylinder and another ellip-
soid).

Fig. 14. Example of a shape-driven defor-
mation. Constructive modeling and defor-
mation steps were performed in arbitrary
order while designing the shape and pho-
tometric attributes of this object.

only to the geometry of the object, similar visual results can be obtained with tra-
ditional set-theoretic and blending operations. The justification of the proposed
work takes its full meaning when both attributes and geometry are considered. If
the deformation node is included in the geometric and attribute trees, the defor-
mation of geometry is followed by the corresponding deformation of attributes.
The complex examples that have been given show that the texture intuitively
follows the deformation of the objects geometry.

The proposed deformation framework can be used in various directions. One
interesting method is to use a curve as a path for the deformation. Source points
and target points are obtained while sampling regularly the curve. The resulting
deformation is expressed in terms of FRep, i.e., successive small deformations
correspond to the nodes of a FRep tree. One important feature of such tree
structure is that the proposed deformation supports self-intersection. Consider
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for instance an ellipsoid deformed along a spiral, as shown in Fig. 11. The spiral
intersects the ellipsoid several times. Figure 11a shows a vertical cut of the
ellipsoid, and Fig. 11b shows the whole object.This deformation can be thought
as a dual effect, where first, the object is locally deformed along the spiral while
pulling objectfs point inside the area of influence, and in a as a second effect,
in the vicinity outside the area of influence, objectfs points are locally repelled,
resulting in a cavity around the spiral, inside the object. The resulting shape is
similar to a shell.

Figure 12 is given to show that the deformation scheme we propose can be
also used to carve object, and even if the most of the examples show major
deformation of an object, subtle details can be also defined. At the left part, an
object has been carved (using two parametric Lissajous curves). At the right, an
additional deformation has been applied. As one can see, the carved details also
follow the deformation. Figure 13 provides another example, where an ellipsoid
is deformed using four deformations, and is then combined with a cylinder and
another ellipsoid using the set-theoretic intersection.

The last example is a vase (Fig. 14). To model this object, we combined the
constructive approach with the sculpting and deforming steps. First, the body
was created using a B-spline object, and then its top was deformed. The next
step was to combine it with an ellipsoid. Once both parts were combined, other
deformations are applied along two curves, such as they get close to the body.
The final step was to create the handles of the vase. If the deformation step was
the last one as it is usually the case, to find the correct location for the handles
may be difficult, but as we built the tree node by node, regardless of the nature
of the operation, this task was easy.

5 Local Metamorphosis of Functionally Defined Shapes

5.1 Previous Work

Metamorphosis between two functionally defined shapes is considered in this
section. A metamorphosis is a smooth transformation of an initial shape to a final
shape. This animation technique is popular for polygonal objects. Nevertheless,
for functionally defined shapes, few techniques have been proposed, especially
for the locally controlled metamorphosis.

One of the first metamorphosis operations was proposed by Wyvill [52], where
initial and final shapes were defined as soft objects. Surface in-betweening is
based on weights assigned to the initial shapes. The force property of each key
point is weighted. The weighting of the source keys is gradually changed from
one to zero as the in-betweening progresses. The weighting of the force property
of the destination keys changes from zero to one. This results in the interpolation
between defining functions of source and destination soft objects.

In the advanced modeling technique proposed in [53], still based on skeletal
implicit surfaces, metamorphosis is well defined by the use of a warping opera-
tor [19]. This operator allows for the fine control of the metamorphosis in some
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cases. In this context, initial and final shapes are defined by a constructive ap-
proach and are represented using a tree structure called a BlobTree. To define
a metamorphosis with the proposed warping operators, one needs to define a
correspondence between subtrees of the initial shape with some other subtrees
of the destination shape. A subtree is a subset of the initial BlobTree, and can
include several primitives (leaves of the tree) based on a distance function and
a potential function, and several operations (nodes of the tree; set-theoretic,
algebraic transformations, etc.). However, the warping operator is practically
applicable only to blobby objects. It can be hardly applied to other function-
ally defined shapes. In this section, we intend to fill this gap and try to provide
a new operation that enables the definition of local metamorphosis for more
general functionally defined shapes. As a framework for defining the shapes, we
use the function representation. Given two FRep objects with the correspond-
ing defining functions f1 and f2, a metamorphosis can be defined as a linear
interpolation between these two real valued functions, where the time t is the
parameter used for the interpolation:

F = (1 − t) × f1 + t × f2 (14)

The metamorphosis operator in eq. 14 is defined in the extended space. Indeed,
this formula is equivalent to a linear interpolation of two function values that is
in other words a special function mapping defined in the extended space.

It assumes that the shapes defined by f1 and f2 overlap in the space; otherwise
in the resulting animation, one shape disappears and another appears somewhere
else, without actual shape transformation. This definition of the metamorpho-
sis is global as the interpolation is defined for all points in space. Using this
definition, one can not define metamorphosis locally.

However, one may want to have a finer control of the metamorphosis process.
Hereafter, we define a new operation for metamorphosis that allows one to

Fig. 15. Metamorphosis of a block to a ring. (top)
Global metamorphosis using the linear interpola-
tion. (bottom) Local metamorphosis using two user
defined partitions shown in different gray colors.

Fig. 16. Metamorphosis par-
titions used for the animation
shown in Fig. 17
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control locally its behavior. To define this operation, we need first to define
a set of space partitions, where each local metamorphosis occurs and then a
corresponding time schedule. With the use of these two items, we finally define
the new metamorphosis operation.

5.2 Local Metamorphosis

This section is organized as follows. First, we propose a means to specify parti-
tions of the Euclidean space where the initial and final shapes are defined. Such
partitions are called in the following metamorphosis partitions, and are denoted
Λi, where the lower script i indicates the partition number.

Second, we specify a time schedule. We use in the following the global and
local dynamic variables which can be mapped to time in order to generate an-
imation. To control the time interval when a metamorphosis occurs inside a
partition and the behavior of the metamorphosis in each partition, we assign a
local dynamic variable to each partition. Finally, in the last part, we define the
local metamorphosis operation, using the metamorphosis partitions, the global
dynamic variable, and the local dynamic variables.

Models of Partitions. Metamorphosis partitions are defined using any real
valued functions that fit to the FRep model. To define a metamorphosis partition,
two different functions are needed. The first function defines the FRep model
and takes values in �. The second function is defined depending on the first
function, and takes values in the interval [0, 1].

Let Pi be the defining function of the ith partition Λi in the Euclidean space.
The function Pi defines two subsets of this space, one where Pi is greater or
equal to zero and another where it is negative.

Let FPi be a real valued function defined upon the defining function Pi. It is
constructed to meet the following requirements. Given a user defined threshold
value Γi (greater or equal to zero), the behavior of FPi is as follows:

FPi =

⎧
⎪⎨

⎪⎩

0 if Pi(X) < 0
Ω

(
Pi(x)

Γi

)
if 0 ≤ Pi(x) < Γi

1 if Pi(X) ≥ Γi

(15)

with the function Ω being one of the functions below:

Ω(X) =

⎧
⎨

⎩

X
3X2 − 2X3

6X5 − 15X4 + 10X3
(16)

Loosely speaking,FPi is a simple step function that maps Pi to the interval [0, 1],
and Ω allows one to control the continuity of this mapping. Other definitions for
such a function can be found in the literature, see, for instance, [27].

In the general case, a set of metamorphosis partitions is defined. From the
user side, he/she models a set of partitions Pi using FRep and associates each
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partition with a threshold value Γi. After he/she has defined N partitions, an
additional metamorphosis partition, called the remaining partition Λr, must be
defined in order to cover the entire Euclidean space. The remaining partition
is defined as the set-theoretic difference between the Euclidean space and the
union of all the partitions defined by the Pi functions. The mapping function
associated with this remaining function is expressed as:

FPR(X) = 1 −
∑

FPi(X) (17)

Only for this special partition, the function FPR may take values that are
not within the interval [0, 1], but, as it will be shown later in this document,
this property does not influence the desired result. Once a set of metamorphosis
partitions has been defined, one needs to define a time schedule to indicate when
a metamorphosis starts and stops evolving inside a partition.

Time Schedule. The whole metamorphosis is controlled by the time parameter,
a global dynamic variable t, defined for simplicity in the interval [0, 1]. We define
for each partition Λi a local dynamic variable ti. Let us assume that N partitions
have been defined. Then, for each partition Λi, each local dynamic variable ti
takes value in the interval [0, 1], which corresponds to the interval [Ti, Ti+1] of the
global dynamic variable t, where Ti and Ti+1 are user defined boundary interval
values, T0 = 0 and TN = 1. These boundaries correspond to the beginning and
ending time values, when the metamorphosis starts and finishes inside the given
partition Λi.

For instance, let us assume that two partitions have been defined, plus the
third one, i.e., the remaining partition. At the beginning, the time t0 correspond-
ing to the first partition changes linearly from zero to one; then when t0 is equal
to one, t1 starts to grow until it reaches one; finally, once t0 and t1 are equal to
one, the dynamic variable tr corresponding to the remaining partition starts to
increase, until it reaches one. When tr is equal to one and the metamorphosis is
finished.

In the previous two subsections, we explained how to define space partitions
and the corresponding time schedule. In the next subsection, we define the local
metamorphosis operation for two given shapes.

Local Metamorphosis Definition. The local metamorphosis operation is
defined by a mapping function that maps the global dynamic variable t of Eq.
14 to another global dynamic parameter t′. Given a set of N metamorphosis
partitions Λi, a time schedule with local dynamic variables ti, the remaining
partition ΛR with its own local dynamic variable tR, and a global dynamic
variable t, the mapping of t can be described as follows:

t′(X) =
N−1∑

i=0

tiFPi(x) + tRFPR(X) (18)
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Then, the mapped global dynamic variable t′ is simply used instead of t in
the linear interpolation for the global metamorphosis operation (see Eq. 14):

F = (1 − t′) × f1 + t′ × f2 (19)

Equation 19 defines the mapping of the global dynamic variable depending on
the metamorphosis partitions. It implies a special requirement to the metamor-
phosis partitions. They should be non-overlapping. This requirement is not very
strong, because partitions are modeled for metamorphosis. To model overlapping
partitions is conceptually difficult to understand, as the aim of the partition is
to localize metamorphosis, i.e., to specify when a part of the shape starts and
stops to evolve. If this part belongs to two or more metamorphosis partitions,
the result that one expects is not clear.

Thus, using Eq. 18, a set of non-overlapping metamorphosis partitions mod-
eled with FRep, and a time schedule, one can model the metamorphosis of two
functionally defined objects with local control. The next subsection presents sev-
eral examples. As a last remark concerning the definition of the local metamor-
phosis, and especially of the time schedule, one may wish to change the linear
growth of the dynamic variables (both local and global) to some more com-
plex behavior. As the Ω function provides certain continuity, existing animation
techniques can be easily included to this definition. Indeed, in the literature,
non-linear time control has been widely discussed, and can be based on a 1D
mapping function, using a spline function [17]. Such a fine control of the time
schedule can be included as an additional mapping of the dynamic variables as
long as the resulting mapped variable remains in its dedicated interval.

5.3 Results and Examples

In this section, we give several examples of local metamorphosis. The first exam-
ple of the metamorphosis between a 2D block and a 2D ring is shown in Fig. 15.
Two partitions are defined, an ellipse and a disk. This figure shows some frames
of three different animations. The top row shows a simple linear interpolation
between the initial block shape and the final 2D ring (Eq. 14). The bottom
row shows the resulting frames while using the local metamorphosis operation
defined in this section. The assigned greycolor corresponds to the given meta-
morphosis partitions. The threshold values for both partitions are different. The
value corresponding to the partition defined by an ellipse is close to one, and for
the other partition it is close to zero. As one can see, in the first partition, the
metamorphosis is smoother than in the second one. According to the time sched-
ule, first, the metamorphosis occurs in the area defined by an ellipse, then in the
area corresponding to the second partition, and finally the remaining space is
metamorphosed.

The given definition for local metamorphosis provides the possibility to apply
metamorphosis anywhere in space and completely independent of the construc-
tive trees of the objects under consideration. This feature is very important for
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Fig. 17. Metamorphosis of a tank to a plane. (top) Global metamorphosis. (bottom)
Local metamorphosis using the partitions shown in Fig. 16.
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the creation of a complex metamorphosis. Figure 17 shows the metamorphosis
between FRep models of a tank and a plane. The upper set of frames shows the
result of the global metamorphosis, while the lower set of frames illustrates the
usage of the local metamorphosis. Figure 16 shows the metamorphosis partitions.
The metamorphosis occurs first in the partition defined by a block, then in
the darkest spheres, then in the brightest sphere and finally in the remaining
space. As one can see, we choose to morph some parts of the object that do not
correspond to a precise subtree of the initial constructive trees.

So far, we have defined the local metamorphosis operation and considered
only geometry. But as a matter of fact, nothing prevents one from using this
operation in the constructive hypervolume model [36]. Indeed, in this model, at-
tributes, such as color, temperature or any other abstract point-wise attribute,
are also functionally defined. The definition of local metamorphosis for attributes
is straightforward, as one need to simply replace the defining function of the geo-
metric shapes with the real valued function of an attribute. The only restriction
on the metamorphosis is that the initial and destination attributes should be of
the same nature (a color is changed to another color, for instance).

6 Conclusion

We presented different modeling approaches for constructive hypervolume mod-
els based on extended space mappings. It allows us to combine two different
modeling paradigms, namely interactive sculpting and constructive modeling,
with metamorphosis operations.

First, we defined a new primitive based on the trivariate B-spline function, and
then included it to the set of primitives of the FRep constructive tree. An object
modeled using this new primitive is defined by a single real-valued function and
can be used in further modeling stages in the FRep model. Such an object can
also be used to defined space paritions in constructive hypervolume models.

Then, a new set of operations for deforming constructive hypervolumes is
proposed relying on the definitions of areas of influence and of a target areas. A
large number of new deformations can be obtained with this method, including
the possibility to easily change the topology of the initial shape.

Finally, a new metamorphosis operation was described that permits local
control of the metamorphosis behavior. To define this operation, a set of non-
overlapping metamorphosis partitions and a corresponding time schedule are
introduced.

All the described techniques can be easily applied to traditional implicit ob-
jects. Nevertheless, the most intriguing results are achieved while using the con-
structive hypervolume model, where both geometry and attributes undergo si-
multaneous transformations.

In our future research, we would like to include the SARDF operations (see
another volume chapter) and distance based primitives to check if the distance
field provides better control and localization of operations.
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Abstract. A heterogeneous model consists of a solid model and a num-
ber of spatially distributed material attributes. Much progress has been
made in developing methods for construction, design, and editing of such
models. We consider the problem of optimization of a heterogeneous
model, and show that its representation by a continuous function de-
fined over a constructively represented domain naturally leads to simple
and effective optimization procedures. Using minimum compliance opti-
mization problem as an example, we show that the design sensitivities
are directly obtainable in terms of material and geometric parameters,
which can be used in any standard gradient-based optimization proce-
dures. The proposed approach allows both local control of the material
properties and global control of geometric variations, and can be used
with many existing techniques for material modeling. Numerical experi-
ments are given to demonstrate these representational advantages.

1 Introduction

1.1 Motivation

The term heterogeneous model refers to a general computer representation of a
(typically solid) geometric domain with one or more spatially varying attributes.
It is common to view such a model as a tuple [18,1]:

〈Ω,F〉,

where Ω ⊂ E
3 is a solid model, and F is a collection of attribute material

functions Fi : Ω → R
m which may include scalar- and tensor-valued properties,

such as density, volume fractions, modulus of elasticity, conductivity, and so on.
Over the last twenty years, much of the research in geometric modeling fo-

cused on construction, design, and editing of such models. Early approaches
recognized that the material attribute modeling problem is an instance of a
boundary value problem and developed material representation schemes based
on finite element meshing and other spatial discretizations [25,20,27]. But ad-
vances in design and manufacturing of functionally graded materials and related
� Complete address: 1513 University Avenue, University of Wisconsin, Madison, WI

53706, USA.

A. Pasko, V. Adzhiev, and P. Comninos (Eds.): HOMA, LNCS 4889, pp. 193–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



194 J. Chen and V. Shapiro

technologies also led to new modeling requirements. Discrete changes in material
properties implied that both the geometric domain Ω and material properties
Fi are modeled, composed, and edited in a piecewise continuous fashion. Fur-
thermore, material properties are usually defined by and associated with ma-
terial features and their geometric parameters that must be explicitly available
in any geometric representation of Ω. Typical engineering features may include
partial or complete boundaries, regions, and datums (references). Thus, depen-
dence on artificial spatial discretizations becomes both awkward and inefficient.
Many interpolation and composition approaches for constructing and editing
such feature-based material models have been proposed in the literature (see
[17] for a recent and comprehensive survey of heterogeneous modeling methods
and techniques).

If the representation of a geometric domain Ω(b) is parameterized by a set
of parameters b = {bi}, it may be convenient that the attribute model F (Ω(b))
should inherit this parameterization. In interactive modeling situations, or when
the material attribute is completely determined by the geometric features, any
changes to a parameter bi are then reflected not only in the geometric model Ω
but also in the accompanying material model F . On the other hand, there are
at least two practical situations where this supremacy of geometric model over
the material model is undesirable:

– A number of shape design and optimization methods determine the shape
Ω based on material properties F in some larger fictitious design domain
D ⊃ Ω. Popular examples in this category include homogenization and SIMP
methods for topology optimization.

– Typically, a product performance measure J(Ω,F) is function of both geom-
etry Ω and material attributes Fi, and it is important to be able to modify
them independently and/or simultaneously until an optimal heterogeneous
model is found.

In both of these situations, it is more reasonable to assume that the geometric
domain Ω(b) and material attributes Fi(c) are independently represented and
parameterized, so that neither relies on or restricts the modeling space of the
other. In this paper, we make this assumption and study the general problem of
optimizing such heterogeneous models.

1.2 Approach and Outline

It should be intuitively clear that material modeling approaches based on the
spatial discretizations are not appropriate because they limit allowable shape
changes and explicitly tie material representation to that of the shape model. It
is less clear whether feature-based approaches may be adopted for our purposes.
To simplify the exposition, we will assume specific but common representations
for the geometry Ω, material functions F , and the optimization problem. In
particular, we will assume that geometric domain Ω is represented implicitly as
the positive hyper-halfspace Φ ≥ 0. We will represent the material distribution
F using a linear combination of B-spline basis functions over a reference domain
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D which contains the geometry Ω. The B-spline representation for the material
field allows continuous material variations and local control of material proper-
ties. As we will discuss in Section 2, the material field does not need to conform
to the underlying geometry, reducing significantly the remodeling cost caused
by geometric changes. The implicit representation for the geometry allows us
to combine the material and geometry in a single formulation using the char-
acteristic function, therefore supporting simultaneous optimization of material
properties and geometry variations.

In Section 3, for the sake of concreteness, we completely formulate and solve
one of the most common shape and material optimization problems using our
assumed representation: minimization of compliance. We then show that both
material and shape sensitivities are readily obtained and computed from the
assumed material model representation. Our prototype implementation and nu-
merical experiments demonstrating effectiveness of the approach are discussed
in Section 4. We demonstrate the application of the described optimization pro-
cedure to the SIMP material model which is commonly used in the area of
topology optimization, and demonstrate a non-trivial extension of the method
using simultaneous material and shape variations.

As we explain in the concluding Section 5, the proposed approach is not re-
stricted to implicit representations of domain Ω. In fact, it applies with minimal
modifications to most geometric representations that are constructive in the sense
that they rely on a finite set of primitives Ωi. We also discuss briefly how our ap-
proach may be combined with other feature-based material modeling approaches.

2 Continuous Material Field over Implicitly Defined
Domain

2.1 Continuous Representation of the Material Field

As we discussed above, we separate the material representation from the geo-
metric representation, i.e. the material representation does not need to conform
to the actual geometry Ω. The material field F (x), x is the spatial coordinate, is
represented as a linear combination of basis functions {χi(x), i = 1, . . . , N} from
some complete space:

F (x) =
N∑

i=1

ciχi(x). (1)

Choices of the basis functions {χi(x)} may include polynomials, trigonometric,
B-splines, radial basis functions, etc. The appropriate choice of basis functions
allows us to obtain desired properties. We choose linear B-spline basis functions
due to their well-understood local control properties [12]. The B-spline basis
functions are distributed over a uniform grid subdividing the reference domain D
which contains the actual geometry Ω. The coefficients {ci} uniquely determine
the associated material field in Expression (1). The basis function representation
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parameterizes the continuous material field in terms of the coefficients {ci},
effectively transforming the material optimization problem to the problem of
determining the optimal values for parameters {ci}.

2.2 Implicit Representation for the Geometry

Implicit representations of shapes have a long tradition in geometric modeling
and computer graphics, as described in several recent books [9,47]. All such rep-
resentations define a shape Ω ⊆ D implicitly in terms of non-negative values
of some function Φ(x) of the spatial variable x as Ω = {x ∈ D | Φ(x) ≥ 0},
where D is some predefined reference domain that contains all possible shapes
Ω of interest. The boundary ∂Ω of the shape Ω is the zero level set of the func-
tion ∂Ω = {x ∈ D | Φ(x) = 0}. This definition is consistent with the notion
of level set function in [36,37,2,49,48,3], but also includes many other represen-
tations used in geometric modeling. Many techniques and transformations for
constructing such representations are described in [9], including Ricci’s function
[29], theory of R-functions [30,31,38,41], and convolution methods. More recent
notable methods include exact and approximate distance fields [14,8], blending
of implicit primitives like blobs, spheres, quadrics, and local quadratics that have
been fit to the points [22,19,24], radial basis functions with both global [46] and
compact support [34,16], and multi-variate B-splines to represent scalar fields
whose zero-sets represent the boundary of sculpted geometry [28,35]. Implicit
representations may be constructed from both Constructive Solid Geometry and
Boundary Representations of geometric objects [38,39,40].

We adopt the implicit representation for geometric domain Ω parametrized by
geometrical parameters b = {bj, j = 1, . . . , M}. Familiar examples of implicitly
defined parametric shapes include conic sections and quadric surfaces, super-
ellipses and super-quadrics, tori, as well as local and global transformations
of these simple shapes [9]. The corresponding functions Φ for these primitive
shapes are well known. The geometric parameters (radii, focal distances, angles,
positions, etc.) of these implicit representations serve as the design variables that
evolve during the search for optimal shape. Parametric implicit representations
for more complex shapes can be built from primitive shapes using a variety of
blending, convolution, and set-theoretic techniques [9,43,42].

2.3 Material Fields over Implicitly Represented Geometry

We consider a material optimization problem where both the material properties
F (x) and the geometric domainΩ are subject to change.The optimizationproblem
has two sets of variables, one is the set of B-spline coefficients {ci} representing the
material distribution, the other one is the geometric parameters {bj} defining the
geometric domain Ω. If we use the usual (Heaviside) characteristic function

H(Φ) =
{

1, if Φ(x) ≥ 0
0, if Φ(x) < 0 , (2)

as an indicator of whether a given point belongs to Ω or not, we have
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Ω = {x | x ∈ D, H(Φ) = 1}. (3)

Then the actual material distribution of interest can be obtained as {F (x)H(Φ),
x ∈ D}. Notice that by separating the material representation from the geometry
representation, we can write the actual material field as the product of two
independent functions: one is the material properties defined by B-spline basis
function coefficients {ci} on a fixed reference domain D, the other is an indicator
function of the implicit representation Φ for geometry Ω defined by geometric
parameters {bj}. As we shall see below, this decouples the material sensitivity
and the shape sensitivity in the optimization process, and allows us to perform
material optimization over varying geometric domains.

3 Optimization Problem

3.1 Formulation

For demonstration purposes, we focus on a compliance (strain energy) minimiza-
tion problem in linear elasticity with volume constraint that has been studied by
many others and is well understood[6]. We seek an optimal shape Ω and material
properties such that the compliance of the structure is minimized. Suppose we
use the material density ρ(x) as the design variable, and the stiffness tensor Eijkl

is assumed to be a known function of the density, the optimization problem can
be formulated as:

min
Ω,ρ(x)

J0(u) =
∫∫

Ω

1
2
Eijkl(ρ(x))εij(u)εkl(u)dΩ (4)

s.t. a(u, v) = l(v), ∀v ∈ U

u|Γ1 = u0
∫∫

Ω

ρ(x)dΩ = V0

0 ≤ ρ(x) ≤ 1,

where J0(u) is the total strain energy, u is the displacement field, εij(u) =
1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
is the elastic strain, v is the virtual displacement and U is the

space of all admissible displacements. The boundary Γ = Γ1 ∪ Γ2 consists of
two parts, with Dirichlet boundary condition u = u0 specified on Γ1 and bound-
ary traction p specified on Γ2, f is the body force. The physics of the prob-
lem is governed by the equilibrium equation a(u, v) = l(v), where a(u, v) =∫∫

Ω
Eijkl(ρ)εij(u)εkl(v)dΩ, and l(v) =

∫∫

Ω
fvdΩ +

∫

Γ2
pvdΓ . In addition,

∫∫

Ω
ρ(x)dΩ = V0 is the volume (weight) constraint, and the bound constraint

0 ≤ ρ(x) ≤ 1 reflects the fact that the material density has to be between 0
and 1.
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We represent the material density ρ(x) as a combination of linear B-spline

basis functions ρ(x) =
N∑

i=1

ciχi(x), so Problem (4) can be written as the following:

min
Ω,ci

J0(u) =
∫∫

Ω

1
2
Eijkl(ρ)εij(u)εkl(u)dΩ (5)

s.t. a(u, v) = l(v), ∀v ∈ U

u|Γ1 = u0
∫∫

Ω

N∑

i=1

ciχi(x)dΩ = V0

0 ≤ ci ≤ 1, i = 1, . . . , N

The bound constraint for density ρ(x) is automatically satisfied by setting bo-
unds on the linear B-spline’s coefficients.

The geometry Ω is to be determined in Problem (5). With the implicit rep-
resentation Φ (with parameters {bj}) for the domain Ω, we can utilize the char-
acteristic function H(Φ) to transform the integrals in Problem (5) to integrals
over the reference domain D. Therefore, Problem (5) can be reformulated as:

min
bj ,ci

J0(u) =
∫∫

D

1
2
Eijkl(ρ)εij(u)εkl(u)H(Φ)dΩ (6)

s.t. a(u, v, Φ) = l(v, Φ), ∀v ∈ U

u|Γ1 = u0
∫∫

D

(
N∑

i=1

ciχi(x)

)

H(Φ)dΩ = V0

0 ≤ ci ≤ 1, i = 1, . . . , N,

where a(u, v, Φ) =
∫∫

D
Eijkl(ρ)εij(u)εkl(v)H(Φ)dΩ, l(v, Φ) =

∫∫

D
fvH(Φ)dΩ +∫

Γ2
pvdΓ . Notice that in this formulation, all integrations are now on domain D.

Problem (6) is a fully parametrized optimization problem in terms of geomet-
ric parameters {bj} and B-spline coefficients {ci}. The explicit parametrization
allows easy sensitivity analysis, as shown in Section 3.3.

3.2 Algorithm

Problem (6) is an explicitly parameterized optimization problem. In principle,
many optimization methods may be used to solve the problem. Since the con-
straints in Problem (6) address different design concerns, we choose to treat
them differently in the optimization procedure.

The equilibrium equation and boundary conditions are determined by the
underlying linear elasticity problem, which is typically solved by some exter-
nal structural analysis method. In the optimization process, we use a meshfree
analysis technique (see Section 4.1) to solve the elasticity problem at each step
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so that the equilibrium equation and boundary conditions are automatically sat-
isfied. The solution field also provides the evaluations of the objective function
and its sensitivity at each step.

While an equality volume constraint is usually difficult to enforce during
the optimization process, we use the augmented Lagrangian multiplier method,
which is well understood and is widely used (for example, see [23]). By imposing
the volume constraint as a penalty term in the objective function, we obtain the
following augmented Lagrangian subproblem:

min
bj ,ci

J(u) =
∫∫

D

1
2
Eijkl(ρ)εij(u)εkl(u)H(Φ)dΩ (7)

+λ

(∫∫

D

N∑

i=1

ciχi(x)H(Φ)dΩ − V0

)

+
1
2γ

(∫∫

D

N∑

i=1

ciχi(x)H(Φ)dΩ − V0

)2

s.t. a(u, v, Φ) = l(v, Φ), ∀v ∈ U

u|Γ1 = u0

0 ≤ ci ≤ 1, i = 1, . . . , N,

where λ is the Lagrangian multiplier and γ is a pre-defined parameter (typically
a very small number). At each iteration, we fix λ and solve the subproblem (7)
for {ci} and {bj}, then we update λ and check for termination criteria. If the
termination criteria are not satisfied, we go to the next iteration.

To solve subproblem (7), we still need to consider the bound constraints 0 ≤
ci ≤ 1. The number of these constraints is very large in our problem. For example,
if we represent the material field on a 50 × 50 grids in two dimension, then we
have 2500 B-spline coefficients, therefore 5000 constraints! It is very challenging
for most optimization algorithms to handle such a large number of constraints.
In our implementation, we choose to modify the stiffness tensor as the following:

Eijkl(ρ(x)) =

⎧
⎨

⎩

Eijkl(ρ = 1) if ρ(x) > 1
Eijkl(ρ) if 1 ≥ ρ(x) ≥ 0
Eijkl(ρ = 0) if ρ(x) < 0

, (8)

and handle these constraints as a post process. If the update of some coefficient
results in the violation of the corresponding bound constraint, we set it to be the
corresponding upper or lower bound. This is physically intuitive, since reaching
the upper bound implies adding as much material as possible (therefore we set
ci = 1); similarly, reaching the lower bound suggests removing the material
(and therefore setting ci = 0). This strategy is similar to the gradient-projection
method (see [23]) from the optimization point of view. The main difference is
that every time we hit the bound along the search direction, we restart searching
from the hitting point instead of bending the search direction.

The augmented Lagrangian subproblem (7) is solved by the conjugate gradient
method. Conjugate gradient method is one of the most useful techniques for
solving large scale linear systems of equations and can also be adapted to solve
nonlinear optimization problems. It is very appealing because in each iteration
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only the evaluations of the objective function and its gradient are required, no
matrix operations are performed and only a few vectors need to be stored [23].
The method is well suited for the formulated large scale optimization problem,
and the gradient information can be computed as shown in Section 3.3. The
Polak-Ribière conjugate gradient method is adopted in our implementation. The
details and convergence studies of Polak-Ribière conjugate gradient method can
be found in many standard textbooks, for example, see [23].

The main algorithm consists of the following steps:

Step 1: Initialize the B-spline coefficients ci and geometrical parameters bj ,
choose λ and γ.

Step 2: Use conjugate gradient method to solve Problem (7)
(2.1) Solve the equilibrium equation with boundary conditions.
(2.2) Calculate gradient ∇J and use it as the initial search direction.
(2.3) Construct a series of search directions until the solution is found. The

termination criteria is defined as
∣
∣ΔJ

J

∣
∣ ≤ ε, where ε is a predefined small

positive number.
(2.4) Reset the values for ci to be the corresponding bounds if they are vio-

lated.
Step 3: Update Lagrangian multiplier

λ = λ +
1
γ

(∫∫

D

N∑

i=1

ciχi(x)H(Φ)dΩ − V0

)

Step 4: Check termination condition. If not satisfied, go to Step 2. The termina-
tion criteria is defined as

∣
∣Δλ

λ

∣
∣ ≤ δ, where δ is a predefined small positive

number.

3.3 Sensitivity Analysis

We now present the sensitivity analysis for the augmented Lagrangian subprob-
lem (7). Since our design variables are material parameters {ci} and geometric
parameters {bj}, we seek the gradient ∇J =

[
dJ
dc1

, . . . , dJ
dcN

, dJ
db1

, . . . , dJ
dbM

]
. We

assume that the body force f and the boundary traction p are independent of
the design.

Since {ci} and {bj} are two independent sets of variables, we can separate
{ dJ

dci
} and { dJ

dbj
} during differentiation. In Problem (7), the displacement field u

depends on the variables ci and bj as well and it is not obvious how to obtain the
derivatives du

dci
and du

dbj
. However, we can use the adjoint method [15], where these

derivatives are not computed explicitly. In addition, the compliance minimization
problem for linear structures is self-adjoint, and the derivative of the compliance
J0 with respect to ci can be obtained as [6]:

dJ0(u)
dci

=
∫∫

D

−1
2

dEijkl(ρ)
dci

εij(u)εkl(u)H(Φ)dΩ. (9)
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Since dEijkl(ρ)
dci

= dEijkl(ρ)
dρ · dρ

dci
= dEijkl(ρ)

dρ · χi(x), we have

dJ0(u)
dci

=
∫∫

D

−1
2

dEijkl(ρ)
dρ

χi(x)εij(u)εkl(u)H(Φ)dΩ. (10)

Using the result from [11], the sensitivity { dJ0
dbj

} can be obtained as:

dJ0(u)
dbj

=
∫

∂Ωj

[

fu + div(pun) − 1
2
Eijkl(ρ)εij(u)εkl(u)

]
1

|∇Φ|
dΦ

dbj
dΓ, (11)

where Ωj is the portion of the zero set of Φ corresponding to parameter bj, i.e.,
the moving boundary of Ω with respect to parameter bj.

Since

d

dci

(∫∫

D

N∑

i=1

ciχi(x)H(Φ)dΩ − V0

)

=
∫∫

D

χi(x)H(Φ)dΩ (12)

and

d

dbj

(∫∫

D

N∑

i=1

ciχi(x)H(Φ)dΩ − V0

)

=
∫

∂Ωj

N∑

i=1

ciχi(x)
1

|∇Φ|
dΦ

dbj
dΓ, (13)

it is easy to see that

dJ(u)
dci

=
∫∫

D

[

−1
2

dEijkl(ρ)
dρ

εij(u)εkl(u) + λ +
1
γ

(∫∫

D

N∑

i=1

ciχi(x)H(Φ)dΩ − V0

)]

χi(x)H(Φ)dΩ

(14)

and

dJ(u)
dbj

=
∫

∂Ωj

[

fu + div(pun) − 1
2
Eijkl(ρ)εij(u)εkl(u)

+λ
N∑

i=1

ciχi(x) +
1
γ

N∑

i=1

ciχi(x)

(∫∫

D

N∑

i=1

ciχi(x)H(Φ)dΩ − V0

)]
1

|∇Φ|
dΦ

dbj
dΓ. (15)

Once the displacement field u is known, the computation of Expression (14)
and (15) involves only differentiation, boundary and volume integration. There-
fore, the computation of the gradient ∇J is straightforward and can be imple-
mented in any systems which support these operations.

4 Experimental Results

In this section we briefly discuss our numerical implementation of the above ma-
terial optimization procedures and show numerical experiments to illustrate the
effectiveness of the proposed method for the problem of topology optimization.
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In all examples, we adopt the SIMP (Solid Isotropic Material with Penalty) stiff-
ness model for the material (tensor) properties Eijkl(ρ) as a function of material
density. The SIMP method has been widely accepted in the area of topology opti-
mization due to its conceptual simplicity and computational efficiency [4,6,5,44].
The SIMP model uses the power-law

Eijkl(ρ(x)) = E0
ijklρ(x)α, 0 ≤ ρ(x) ≤ 1, (16)

where E0
ijkl is the stiffness tensor of the base material. The derivative dEijkl(ρ)

dρ

in Expression (14) can be easily obtained as dEijkl(ρ)
dρ = αE0

ijklρ(x)α−1. The
power α > 1 has the effect of penalizing intermediate densities. The necessary
conditions of α for the material to be physically realizable has been studied in [5],
which we will not discuss in this paper. By making the intermediate densities less
economic in the power-law model, the SIMP penalizes the intermediate densities
and drives the structure to a near 0-1 design during the optimization process.
Note however that the formulation of the sensitivity does not depend on SIMP
and can be used with other models of material properties.

4.1 Meshfree Implementation

The algorithm described in Section 3.2 can be implemented in many meshfree
environments that support stress/strain analysis, allow some programmability
for parametric functions, and provide tools for differentiation, and boundary
and volume integration. Here we briefly describe how the proposed approach
is implemented using the RFM method (R-function method) [45,41] and used
earlier to solve the problems with shape deformations and moving boundary
conditions [43].

Since we represent the boundary of a geometric domain by the zero level set of
an evolving scalar function, it is natural to use an engineering analysis method
that can work with the same geometric representation. The RFM method, a
meshfree method with approximate distances, is well suited for the task. This
method is based on the idea that a physical field can be represented by a gener-
alized Taylor series expansion by powers of an approximate distance field to the
boundary [31,32,33]. Once such distance fields are constructed, they can be used
to construct solutions to boundary value problems that satisfy the prescribed
boundary conditions exactly on all points where the distance field vanishes. The
remainder term in the Taylor series contains degrees of freedom necessary to
approximate differential equation(s), and it also assures completeness of the so-
lution [33]. The method is essentially meshfree, though a background mesh may
be used for integration and visualization purposes. A complete programming
environment supporting construction, differentiation, and integration of all re-
quired functions at run time is described in [45].

In the context of the structural analysis problem solved in this paper, we rep-
resent components of the displacement vector u = (u1, u2) as products of two
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functions ui = ωiΨi, i = 1, 2, where ωi are distance functions to the fixed por-

tions of the boundary of the domain Ω, and functions Ψi =
k∑

j=1
aΨi

j ξj are linear

combinations of basis functions used to approximate the solution of the differen-
tial equation. Basis functions {ξj}k

j=1 can be chosen from B-splines, polynomials,
radial basis functions or even finite elements. Generally, these basis functions can
be defined on a grid that does not conform to the geometric domain and are not
related to the basis functions used to construct the material field ρ. In this paper
we approximate components of the displacement vector using a uniform cartesian
grid of bilinear B-splines. Numerical values of the coefficients aΨi

j are determined
by a standard technique that requires minimization of an energy functional [50].
As a result, we obtain a system of linear algebraic equations whose solution
gives numerical values of the coefficients aΨi

j . Assembly of the matrix and vector
of this system of equations requires differentiation of the approximate distance
fields ωi and basis functions with respect to spatial coordinates and integration
over the non-meshed geometric domain and its boundary represented by a level
set function. Use of B-splines as basis functions results in matrices that possess
block-diagonal sparse structure. Algebraic systems with such matrices can be
efficiently solved by a conjugate gradient algorithm [26]. Once numerical values
of the coefficients aΨi

j are computed, they are substituted into the expressions
for components of the displacement vector u.

4.2 SIMP Examples

The first example is a short cantilever beam, the second example is a Messer-
schmitt-Boelkow-Blohm (MBB) beam. Both examples are benchmark problems
which have been widely used in the literature [13]. The third example is a 3-hole
bracket design problem. Compared to the cantilever beam and MBB beam which
are defined on a rectangular domain, the bracket has a more complicated de-
sign domain. In contrast to the spatially discretized representations that require
complex meshes for complicate geometries, the continuous material representa-
tion over the implicitly represented geometry does not demand any additional
effort as the complexity of the geometry increases. The fourth example is also a
cantilever beam, but it is defined on a varying geometric domain with a mov-
ing circular hole. Both the material distribution and the position of the hole
need to be determined. The fifth example is a stepped cantilever beam where
the material density and the heights of the steps need to be determined. In all
examples, uniform rectangular grids are imposed on the background for support-
ing the basis functions representing the material field (Section 2.1) and the basis
functions representing the displacement field (Section 4.1). This grid is also used
for numerical integration. All examples are plane stress problems with material
properties as follows: Young’s elasticity modulus for base material E0 = 1, and
Poisson’s ratio ν = 1/3. The power α in the SIMP model is chosen to be 3. The
body force is assumed to be zero.
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Example 1: Cantilever beam

Figure 1 shows a classic short cantilever beam design problem defined on a
rectangular design domain D of length L = 0.1, height H = 0.05. The thickness
of the plate is t = 0.0025. A distributed force p = 200 is applied in an interval
of 0.005 around the middle point of the right edge of D and the left edge of D
is fixed. The volume constraint (area of the structure) is set to be one half of
the design domain. We use uniformly distributed material ρ = 1 (i.e. ci = 1, i =
1, . . . , N) over the design domain as the initial design.

H

L

p

Fig. 1. Problem definition of a cantilever beam

Figure 2 shows the optimal material distribution of the cantilever beam from
different grid sizes. The final designs are near 0-1 designs due to the penaliza-
tion of the SIMP material model. In contrast to results from finite element based
methods [6,13], the structures obtained are free of checkerboard patterns due to
the continuous material representation. We notice that material distributions on
finer grids (therefore, with more degrees of freedom) tend to generate finer struc-
tures with more complex topology and smoother boundaries. This phenomenon
is often referred to as mesh-dependence in the literature [6,13]. But visually, this
mesh dependence appears to be less prominent than that observed in similar
computations with from classical finite element based methods. Table 1 lists val-
ues of the objective function and the area of the optimal structures in Figure 2.

(a) 50 × 25 grid (b) 100 × 50 grid (c) 200 × 100 grid

Fig. 2. The optimal structures of the cantilever beam from different grid sizes
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Table 1. The objective (total strain energy) and the area of the optimal cantilever
beam

grid size area total strain energy
50×25 2.50013e-3 1.35270e+4
100×50 2.50115e-3 1.28726e+4
200×100 2.49983e-3 1.22711e+4

We see that with finer grids, the structure has a slightly better performance
(lower value of the objective function), as expected.

Example 2: MBB beam

Figure 3 shows a MBB beam design problem on D of length L = 6, height H = 1.
The thickness of the plate is t = 0.1. A distributed force p = 100 is applied in
an interval of 0.12 around the middle point of the top edge of D. The volume
constraint is half the area of the design domain. Uniformly distributed material
ρ = 1 over the design domain is used as the initial design.

p

L

H

Fig. 3. Problem definition of a MBB beam

Figure 4 shows the optimal structures of the MBB beam from different grid
sizes. As in the first example, the optimal structures are free of checkerboard
patterns and almost 0-1 designs. The mesh dependence is even less noticeable.
Table 2 lists values of the objective function and the area of the optimal struc-
tures in Figure 4. Again we see that the structure generated from fine grids has
slightly better performance.

Example 3: 3-hole bracket

Figure 5 shows the design domain of a 3-hole bracket. The rectangle is of length
L = 0.1, height H = 0.1. The radius of the three holes is r = 0.01 and the holes
are fixed with d = 0.02. The thickness of the plate is t = 0.0025. A distributed
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(a) 60 × 20 grid, with line search

(b) 120 × 40 grid, with line search

(c) 240 × 80 grid, with line search

Fig. 4. The optimal stuctures of the MBB beam from different grid sizes

Table 2. The objective and the area of the MBB beam

grid size area total strain energy
60×20 3.00386 6.35452e+4
120×40 3.00278 6.27174e+4
240×80 2.99862 6.05220e+4

force p = 200 is applied along the bottom half circle of the right hole, the left
two holes are fixed, as shown in Figure 5. The volume constraint is V = 0.003.
We use uniformly distributed material ρ = 1 as the initial design.

Figure 6 shows the optimal structures of the 3-hole bracket from different grid
sizes. Though the design domain is more complicated, it is treated in our method
in the same way as previous examples: B-spline basis functions are posed on
background rectangular grids to approximate the material field and the meshfree
analysis satisfies the boundary conditions automatically. To “protect” the three
holes, a tolerance zone is put around the three holes and the coefficients of B-
splines basis functions that have support intersecting with this tolerance zone
are fixed during the optimization process. Table 3 lists values of the objective
function and the area of the optimal structures in Figure 6.
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p
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d

d

d

d

r

d

Fig. 5. Problem definition of a 3-hole bracket

(a) 50 × 50 grid (b) 100 × 100 grid (c) 200 × 200 grid

Fig. 6. The optimal structures of the 3-hole bracket from different grid sizes

Example 4: Cantilever beam with a moving hole

Figure 7 shows the design domain of a short cantilever beam. The design domain
has a circular hole whose position coordinates are geometric parameters that
are subject to optimization. The length of the rectangle is L = 0.1, the height
is H = 0.05. The thickness of the plate is t = 0.0025. The radius of the hole
is r = 0.0075 and the initial position of the hole is xc = 0.03, yc = 0.0125. A
distributed force p = 200 is applied in an interval of 0.005 around the middle
point of the right edge of D and the left edge of D is fixed. The volume constraint
is V = 0.025. Uniformly distributed material ρ = 1 is used as the initial design.

In this example, the position of the hole and the material distribution are
optimized simutaneously. Figure 8 shows the optimal structures from different
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Table 3. The objective and the area of the 3-hole bracket

grid size area strain energy
50×50 3.00229e-3 9.16768e+4

100×100 3.00925e-3 7.68538e+4
200×200 2.99114e-3 7.20218e+4

H

L

pr
c

x

c
y

Fig. 7. Problem definition of a cantilever beam with a hole

grid sizes and Table 4 lists values of the objective function, the area of the
optimal structures, and the final coordinates of the hole.

Example 5: Stepped cantilever beam

Figure 9(a) shows the design domain of a short cantilever beam. The design
domain consists of three segments (steps) whose heights are subject to optimiza-
tion. The length of the rectangle is L = 0.1, the height is H = 0.05. L1 = 0.03,
L2 = 0.04, L3 = 0.03. The thickness of the plate is t = 0.0025. A distributed
force p = 200 is applied in an interval of 0.005 around the middle point of
the right edge of D and the left edge of D is fixed. The volume constraint is
V = 0.025. The initial heights of the three segments are h1 = h2 = h3 = 0.025,
and the initial material density is ρ(x) = 0.5. Figure 9(b) and 9(c) show the
initial design and the optimal structure respectively.

(a) 50 × 25 grid (b) 100 × 50 grid (c) 200 × 100 grid

Fig. 8. The optimal structures of the one hole cantilever beam from different grid sizes
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Table 4. The objective, area and the final coordinates of the hole in the one-hole
cantilever beam

grid size area strain energy xc yc

50×25 2.50110e-3 1.36148e+4 3.54749e-2 2.49849e-2
100×50 2.50183e-3 1.27441e+4 4.36144e-2 2.49981e-2
200×100 2.49845e-3 1.23955e+4 4.41646e-2 2.51398e-2

H

L

h1 h3
h2

L1 L2 L3

p

(a) the problem definition (b) the initial design (c) the optimal design

Fig. 9. The optimization of a stepped cantilever beam: (a) the design domain, (b) the
initial design with uniform density ρ = 0.5, (c) the optimal design

5 Conclusions

5.1 Summary

We proposed a method for representation and optimization of heterogenous mod-
els. The key feature of the method is the separation of the material represen-
tation and the geometry representation. Representing the continuous material
field using B-spline basis functions gives a smooth material field and allows local
controls of the material properties. The implicit representation for geometry han-
dles geometrical deformations by changing a few geometric parameters. Due to
the separate representations, the material field does not need to conform to the
geometry domain, and therefore no particular spatial discretization is required.

We have shown that material sensitivity and shape sensitivity are easily de-
coupled, supporting simultaneous material and shape optimization. The method
was fully implemented in a particular meshfree framework, but it is general
enough to be implemented in other computational environments with minimum
requirements. Our numerical experiments for the minimum compliance prob-
lem and SIMP material model produce results that are at least as good as any
published in the literature to date. In particular, we notice the absence of any nu-
merical artifacts, such as checkerboard patterns reported by many others [6,13].
This superior numerical behavior may be attributed to built-in continuity of
the material field [21]. Furthermore, to the authors’ knowledge, until now SIMP
has not been formulated or implemented with simultaneously changing globally
parameterized geometric domain.

5.2 Extensions

It should be clear that proposed method can be applied to any material model
and extended to other structural design problems. Any gradient-based methods



210 J. Chen and V. Shapiro

can be used to solve the optimization problem. It is less obvious that the proposed
methods can be used with most geometric representations and feature-based
heterogeneous models.

The implicit representation of the geometry was used in this paper for two
convenience purposes: to define the characteristic function H(Φ), and to derive
the term 1

|∇Φ|
dΦ
db in Equation (11). It is clear that the characteristic function

computation is supported by any unambiguous representation of a solid through
standard point membership classification (PMC) algorithms. Furthermore, we
have recently shown [10] that the derivation of sensitivity in section 3.3 only
relies on the existence of implicit representations, but in fact it does not matter
whether the primitive is represented implicitly, parametrically, variationally, or
procedurally. Also, we show in [10] that the term 1

|∇Φ|
dΦ
db is equivalent to the

normal component of the boundary velocity vn. The proposed approach applies
as long as we are able to compute the shape (design) velocity vn in the direction
normal to the primitive’s boundary. Once the primitive velocities are computed
based on the properties and representations of the individual primitives, they
can all be used simultaneously within the framework described in this paper. In
this sense, the proposed approach to optimization of heterogeneous models can
be used with most geometric representations.

As we already mentioned in the introduction, the separation of material repre-
sentation from geometry comes at a price: the changes in geometric parameters
do not propagate into the material representation, undermining the benefits of
the feature-based approach to material modeling. It is proposed in [7] that the
material field may be represented as a sum of two independent fields: F = P +R,
where the P (b) interpolates the material properties prescribed at the features of
Ω, while R(c) is a linear combination of B-splines that may be used to control
local material properties. Such representation of material field may support both
interactive design of heterogeneous models where the material properties follow
the geometric parameters and material optimization at the points of the domain
that are sufficiently far away from the material features.
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Abstract. The automation of the function-based (FRep) volumetric
modeling task is tackled by introducing template parameterized mod-
els and a procedure for recovery of constructive models from segmented
point-sets. In order to reuse existing models, we propose to parameterize
them and to fit the parameters to different point-sets for optimizing and
adapting the shape to different objects of the same class of shapes.

The automation of the creation of a constructive FRep model is also
considered by creating a recovery procedure for a given segmented point-
set and a list of corresponding primitives. A genetic algorithm is used
to find the best constructive expression for the object with the given set
of primitives in the point cloud segmentation and the set of available
operations.

The proposed approach is illustrated by fitting of different models to
point clouds and by the automatic generation of constructive trees from
segmented point-sets for real mechanical parts.

1 Introduction

Modeling objects in a constructive way by recursively applying set-theoretic op-
erations to primitives is a well-known and powerful paradigm in solid modeling.
Combined with the generation of a functional expression for the final solid with
the defining function having a distance property, it provides a powerful tool for
solid modeling and applications. The construction of objects following this para-
digm may however be tedious and sometimes repetitive. The automation of the
model construction process is suitable and for that purpose we introduce the
notion of template constructive function-based models. The basics of construc-
tive function-based modeling using the function representation (FRep [31]) are
described elsewhere in this volume.

A template FRep model is a model where abstract parameters are released and
fitted to adapt the shape to different discrete point-sets acquired by scanning
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devices or already available from a different representation of the solid. The
defining FRep function can be considered as an algebraic distance measure.
Fitting of non-linear parameterized FRep models can be implemented using a
combination of meta-heuristics such as simulated annealing or genetic algorithms
with local methods such as Newton methods.

However, fitting can be applied in the case the construction of the object is
already known, and an analytical expression or a function evaluation procedure
with a set of predefined parameters is provided. The next step in the automation
of the creation of constructive FRep models is to try to recover a set-theoretic
expression for an object from a given segmented point-set and a list of primitives
in the segmentation. We introduce a genetic algorithm to find the best construc-
tive expression involving the primitives fitted to the segmented point-set and
operations selected from a set of predefined operations. The obtained construc-
tive FRep model can be parameterized and used as a valid template, which can
be reused and fitted to different instances of the object.

Parameterized templates modeling and fitting is illustrated in this paper
through the processing of different cultural heritage and mechanical objects.
Finally, we illustrate the automatic generation of constructive trees from seg-
mented point-sets for real mechanical parts.

The modeling automation methods presented here can be applied to obtain
function-based models of heterogeneous objects or their elements. These can be
FRep solids, space partitions and material features for spatial attributes mod-
eling, carrier surfaces and trimming objects for trimmed implicit curves and
surfaces covered in other chapters of the volume.

2 Previous Works

Modeling requires a lot of skills and can be a difficult and time-consuming task.
We look at the automation of the modeling process. We briefly survey the existing
methods for the modeling automation for existing shapes using data acquired
with scanning devices.

The automation process, called reverse engineering, consists usually of the
following steps – not necessary in a linear order:

– data capture; for example using a laser scanner, or others [41]
– preprocessing; like denoising, computing consistent and globally oriented

normals, combining multiple views obtained from different data acquisitions
– segmentation and surface fitting; where data points are grouped into sets to

which an appropriate surface is fitted
– geometric model creation

Automation is also required when converting data from one format to another,
for example from the boundary representation (BRep) to Constructive Solid
Geometry (CSG).
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Generally, it is possible to distinguish between reverse engineering for computer
graphics purposes and CAD purposes, because they have different goals, even
if the global framework is the same. Reverse engineering for CAD purposes has
stronger requirements for the generated CAD model. The following review of
existing works follows this distinction.

2.1 Creation of Triangle Meshes and Implicit Surface Fitting

Creation of triangle meshes: The work by Hoppe [17] reconstructs a surface in
three steps: 1) initial surface estimation by computing a signed distance func-
tion, 2) mesh simplification, 3) piecewise smooth surface optimization. Amenta’s
Power Crust method [1] relies on computing an approximation of the medial axis
transform with polar balls.

Ohtake et al. [30] compute a mesh approximation of scattered point data
by creating an adaptive sparse cover of the point-set, creating auxiliary points
corresponding to the spheres, connecting these points, and finally filling the holes
and cleaning the mesh.

Implicit surface fitting: The reconstruction method proposed by Muraki [27]
consists in fitting blobby models [5] to range data. Savchenko et al. [35] and later
Turk et al. [39] proposed to fit a linear combination of radial basis functions to
the point-set. Compactly supported radial basis functions were introduced by
Morse et al. [26] to decrease the complexity in time and memory of the previous
method. Partition of Unity was introduced by Ohtake et al. [28] as an elegant way
to partition the point-set in order to decrease drastically the time and memory
complexity.

These methods produce verbose models, even in the case of implicit surface
fitting which may contain a lot of coefficients for the series items as well as the
original point-set. They are also practically useless for inspection and reuse of the
structure of the object in contrary to objects built using constructive geometry
methods. Furthermore, besides the work of Amenta [1] they lack of theoretical
guarantees: existence of cracks and holes, and different topology than the original
models.

These methods are however really good for producing nice looking triangle
meshes to be used in various applications such as games, virtual museums and
others. For complex freeform shapes with lots of small details, they appear also
as the only practical methods.

2.2 Reverse Engineering in CAD

The main difference between the reverse engineering for CAD and for computer
graphics applications is that the creation of geometric models for CAD purposes
concentrate on accurate and consistent models using standard surfaces as found
in the common CAD/CAM systems [41]. The reconstructed model should be a
valid CAD model for solid modeling and ready to undergo further operations.
The standard model representation is usually the boundary representation or
BRep.
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The problems to be solved include: identifying sharp edges, treatment of
blends, providing continuity and smoothness between the patches. Another im-
portant problem is the creation of geometric models respecting constraints such
as for example: planes are parallel, spheres are concentric, smooth blend between
parts, and others [3].

The segmentation part is especially difficult. It consists in clustering the origi-
nal point-set into subsets that correspond to some common primitives. It is a key
step in identifying the logical structure of the final CAD model. The dissertation
of Vanco [40] studies the problem of direct segmentation of a point-set, where
no intermediate triangulation of the point-set is computed to do the segmen-
tation. It relies on normal and curvature estimations for clustering the points.
The drawback of the approach is that computation of normals and curvature
is difficult: computing normals with a global consistent orientation is NP [17].
Hoppe [17] proposes a heuristic method to solve it. Computing numerically re-
liable curvature information is also a difficult problem [29]. Benko and Varady
use also a direct segmentation by computing a series of simple tests to split the
original point-set [4]. Marshall et al. [22] try to fit common primitives (sphere,
torus, plane) using an approximation of the Euclidean distance.

After the point-set is segmented, primitives are associated and fitted to each
subset. Sometimes the fitting is part of the segmentation [22].

The final step is the creation of the CAD model. It consists in grouping the
fitted primitives to make a valid BRep: most of the difficulties are from the
constraints requirements to the final model. Another problem is the creation of
a valid BRep model that may be difficult to fulfill.

2.3 Boundary Representation to CSG Conversion

The problem of BRep to CSG conversion is a difficult problem related to reverse
engineering of solids. Suppose that we have been successful in generating a BRep
model from a point-set, or that we have a segmentation of the point-set, with
a primitive fitted to each of the subsets. Then we want to convert the BRep
to a CSG representation or to find a CSG representation that uses the fitted
primitives.

The question of converting a BRep to a CSG representation has been firstly
investigated by Rvachev et al. in the two-dimensional case [34], where an al-
gorithm to convert a shape defined by a two-dimensional linear polygon to a
set-theoretic representation is described. In the English literature, a similar al-
gorithm is attributed to Batchelor [2], where the conversion algorithm is based on
the concept of convex deficiency tree: any linear polygon can be represented by
the difference between its convex hull and a finite number of concavities. Shapiro
extended the algorithm to handle curved polygons [36]. Similar algorithms were
adapted to three-dimensional polyhedra [44], but unfortunately do not work for
some polyhedra. In three-dimensional spaces, the problem has been solved for
solids bounded by second degree surfaces [37,6]. These algorithms may require
some additional halfspaces not available from the boundary faces information or
from the segmentation.
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2.4 Discussion

Methods generating a triangle mesh approximation of the surface are unaccept-
able for several applications involving the reconstructed model. The generated
triangle mesh provides no theoretical guarantee of accuracy or consistency. The
same fact holds for methods based on fitting implicit surfaces. In most of the
cases, there is no proof of accuracy or consistency. For example: can we guar-
antee that there will be no extra isosurface, or extra isolated point-set of lower
dimension corresponding to the isovalue of interest?

Reverse engineering in CAD has stronger requirements than reverse engineer-
ing with applications in computer graphics: it aims at providing valid, accurate
and consistent models. However, the target model is a boundary representation
model, which is known to have various problems. For some applications, it is
interesting to obtaine a constructive tree, because it can be used later to inspect
or modify the structure of the recovered object.

The same requirement of getting a constructive tree can be made when fitting
implicit surfaces. When recovering an FRep model from a given existing solid,
a constructive object carries more information than a set of basis functions and
their associated coefficients.

Getting a constructive tree gives the possibility to later treat and handle
the object in the same way it could be done with any objects modeled by a
user. Especially one can inspect the structure of the object, modify primitives
or operations, to create new models. Being able to use the constructive tree to
evaluate the corresponding real function is another important requirement as the
real function can be used for further applications. This function can be used, for
example, to generate meshes adapted to the requirements of the finite element
methods [18] or it can be used directly in mesh-free methods [13].

Considering these criteria, we look at the problem of reverse engineering ob-
jects using constructive FRep models. We introduce for that purpose the idea
of parameterized templates. A parameterized template FRep model is a sketch
made by the user, where the constructive tree contains only specified operations
and types of primitives, while the parameter values of operations and primitives
are not defined and should be estimated by fitting as will be discussed below.
The creation of template models may still appear to be a difficult task. We also
investigate the automation of this task by converting segmented point-sets into
constructive FRep models.

3 Automation Methods

3.1 Automation of Modeling Using Template FRep Models

Modeling requires lots of skills and can be a difficult and time-consuming task.
We present here the notion of an FRep template to automate the modeling step
[9]. A practical case requiring automation consists in modeling existing objects
acquired with scanners. The FRep model refers here to the general case functions.
However, the use of the distance or approximate distance functions can provide
better results in the fitting process of template models [8].
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Template FRep Models. An FRep model can be built in a constructive
way with abstract parameters. The modification of these parameters can re-
sult in various shape modifications including changes of shape topology. Shape
parameters can also be estimated to fit some special modeling criteria. In the
following, the notation F (p,a) is used for a parameterized FRep model, where
p = (x, y, z) ∈ R

3 is a point in the 3D space and a = (a1, . . . , am) ∈ R
m is a

vector of m parameters.
In a given domain of application, objects can have similar shapes that can

be parameterized. Template models can exist in specialized libraries for each
application domain (mechanical design, human prosthesis design, and others)
and may be reused, or need to be created by the user. In the latter case, a
modeling work needs to be done by a designer. A parameterized model can be
created using measurements or scans of a typical object. The model is required to
keep basic ratios of the measured sample object and to proportionally change the
dependent parameters according to introduced constraints. In case of scanned
data available for a typical object, fitting of the template parameters can be also
employed to establish basic ratios and constraints.

An example of a parameterized template FRep model, with different instances
of the parameters, is illustrated in Fig. 1. The different model’s parameters
represent the dimensions of the box, the diameters of the cylinders and their
positions.

Fig. 1. Illustration of a parameterized template FRep model: a model is built with
FRep in a constructive way with abstract parameters that can be tuned to satisfy
some modeling criteria

Fitting Problem Formulation. The problem is to recover a solid from a set of
3D points, S = {p1, . . . ,pN}, scattered on the surface of the object. Given S, the
task is to find the best configuration for the set of parameters a∗ = (a∗

1, . . . , a
∗
m)

so that the parameterized FRep model F (p,a∗) closely fits the data points.
F (p,a) is an FRep model, made in a constructive way, which approximates the
shape of the solid being reverse engineered. The vector of parameters a control
the final shape of the solid and the best fitted parameters should give the closest
possible model according to the information provided by S.

For computing how close a given point is to the surface of the solid with
the current set of parameters, a fitness function is needed. The FRep model
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F (p,a) itself can serve for defining such a measure. Note that the better F is an
approximation of the Euclidean distance function, the more robust the fitting
will be. The error of fit becomes the square of the defining function values at all
points (the surface of the solid being the set of points with zero function value):

error(a) =
1
2

N∑

i=1

F 2(pi, a) (1)

which can be also rewritten under the following form:

error(a) =
1
2

N∑

i=1

F 2
i (a) =

1
2
Ft(a)F(a) (2)

where F(.) is the vector with Fi(.) = F (pi, .) as the i − th component. Now, we
are searching for the vector of parameters a∗ minimizing the error of fit from
equation 1. We consider at first local methods for minimizing functions with
nonlinear parameters.

Nonlinear Minimization of Least Squares by Local Methods. The best
set of parameters a∗ is found by minimization of the least square error (equation
1). This least square error is usually a nonlinear function of the parameters a.
Traditional methods for solving such problems are Levenberg-Marquardt meth-
ods [33], [25] or Newton methods [7] (full-Newton or quasi-Newton). Such algo-
rithms proceed iteratively from an initial set of parameters and try to converge
to a minimum in the parameter space. These methods strongly depend on the
initial parameters’ estimations, which are used for starting the algorithm.

Such algorithms search in each iteration for a privileged direction to go in the
parameter space and for a step to move in that direction. Levenberg-Marquardt
and Newton type algorithms differ in the selection of direction and in the ways
of computing the step.

The function being minimized, in that case the least square error, is approxi-
mated by a Taylor series expansion to the second order:

error(a) = Ft(ak)F(ak) + (a − ak)tJ(ak)tF(ak) +
1
2
(a − ak)t

(J(ak)tJ(ak) +
N∑

i=1

Fi(ak)∇2Fi(ak))(a − ak) (3)

where ak is the vector of parameters for the k − th iteration, J is the Jacobian
of F and ∇2Fi is the Hessian of Fi. Note that ∇error = JtF and ∇2error =
JtJ +

∑N
i=1 Fi∇2Fi.

Newton methods compute the direction as the solution of the following equation:

H.(ak+1 − ak) = −JtF(ak)
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where H is the Hessian matrix of the error function, or its numerical approxima-
tion when it is not known analytically. Variations of the Newton method differ
in whether they use the exact Hessian or an approximation. The Gauss-Newton
method, for example, uses JtJ as a Hessian approximation.

Levenberg-Marquardt algorithm provides an efficient way for switching between
a Newton method and a steepest descent method for selecting a direction. This
is done by solving the following equation for the unknown ak+1:

(Jt.J + λI)(ak+1 − ak) = −JtF(ak)

where ak is the current vector of parameter, ak+1 is the next vector of parameter.
λ is adaptively changed during run-time to allow the use of a Newton method
(λ = 0) or a steepest descent method (big value for λ).

These methods can in general guarantee only a convergence to a local min-
imum: for parameter spaces with complex topology like, for example, where
multiple local minima exist, these methods are likely to be trapped at a local
optimum. Good choice of initial parameters is important, because it will deter-
mine to which minimum the algorithm may converge. Usually, if the parameters
are not in the neighborhood of the global minimum, it is unlikely to converge
to it.

It is possible with some further analysis of the model to have some additional
information for getting better estimation of the starting parameters. It may also
be possible to restart the search algorithm with different starting points. Another
method consists in using metaheuristics such as simulated annealing or genetic
algorithms to perform the nonlinear optimization.

Simulated Annealing. Simulated annealing is one of the most effective meth-
ods for solving combinatorial and continuous global optimization problems
[23,19,33]. When trying to minimize an objective function usually only downhills
are accepted, but within a simulated annealing algorithm some uphills may be
accepted, with a probability p(T ), which is initially close to 1, and then decreases
to 0, when the temperature T of the system reduces. The procedure, governing
the temperature evolution of the system, is called temperature schedule or cool-
ing schedule.

The simulated annealing algorithm has been inspired by the behaviour of some
thermodynamical process: in a liquid at high temperature, the molecules move
freely with respect to one another; when the liquid is cooled down, the mobility
of the molecules decreases, and finally stops. If the cooling is not too fast, then
the system will finish in a state of minimum energy. According to the Boltzmann
law, a system in thermal equilibrium at temperature T has its energy distributed
probabilistically among all different energy states. Even for a low temperature
there is a chance for the system to be in a high energy, so that it can escape the
local minimum energy and finds a better one.

Convergence to an optimal solution can be theoretically guaranteed, but only
after an infinite number of iterations controlled by the cooling schedule. In order
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to provide a finite time implementation, a proper cooling schedule is needed to
simulate the asymptotic convergence behavior of the simulated annealing. For
that reason, simulated annealing suffers from slow convergence and may wander
around the optimum solution when high accuracy is needed.

A typical simulated annealing algorithm is given below:

Simulated-Annealing
1. Initialization. Choose an initial solution x0. Fix the parameters for

the cooling schedule: the initial temperature Tmax, the epoch length
M , the cooling reduction factor λ, the minimum temperature Tmin.

2. The main iteration. Repeat M times the following SA search. Gener-
ate a trial point randomly xSA within the feasible domain. Evaluate
f at the trial point xSA and accept the trial point (xk+1 := xSA) if:
(a) Δf := f(xSA) − f(xk) < 0 or
(b) Δf ≥ 0 and p = exp(−Δf

T ) ≥ r where r is a random number in
(0, 1).

3. Termination. If the cooling schedule is completed (T ≤ Tmin) or the
function values of two consecutive improvement trials become close
within a tolerance ε or when the number of total iterations exceeds
some user threshold, then quit. Otherwise, decrease the temperature
by setting T := λT and go to step 2.

Genetic Algorithms. Using a genetic algorithm is another way to solve prob-
lems of optimization (combinatorial or continuous). A genetic algorithm consists
in a population of individuals, also called chromosomes, and operations, inspired
by the mechanisms of natural selection and the law of genetics, which act on the
elements of the population. An individual encodes a solution of the problem us-
ing an appropriate representation for this given problem. In the case of nonlinear
optimization of real-valued functions, it consists in a set (an array) of parame-
ters from the parameter space. The different operations acting on the individuals
from a population are typically selection, crossover, and mutation [16,14].

Genetic algorithms and simulated annealing are good methods for finding a
global optimum among many local optima. Practically it is useful to combine
these global methods with local methods to refine the solution and/or accelerate
the search.

We have implemented the simulated annealing and direct search methods,
such as Levenberg-Marquardt or quasi-Newton type, in C. The two types of
algorithms, simulated annealing and the direct search method, are combined in a
two-step process. The first step (simulated annealing) should give a configuration
in the parameter space being in the vicinity of the global minimum and thus
should help avoiding local minima. The second step (the local method) should
guarantee a faster convergence by avoiding that the algorithm wanders around
the solution and should also improve the quality of the fitted parameters.

Switching from simulated annealing to the local method is done when: a given
number of iterations (of simulated annealing) is performed, or the cooling sched-
ule is completed, or the function values of two consecutive improvement trials
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become close within a given tolerance. If the switch from simulated annealing
to the direct search method is done because the given number of iterations of
simulated annealing have been finished, then simulated annealing will be run
again (continued) after the direct method is completed, starting with the best
fitted parameters obtained from the direct method; these two steps – simulated
annealing and the direct method – are iterated a given number of times. In
other cases, i.e., the cooling schedule is completed or the function values of two
consecutive trials are close, the algorithm terminates after the direct search step.

3.2 Constructive Tree Recovery Using a Genetic Algorithm

We propose an algorithm for recovering an FRep model defined by a constructive
tree from a segmented point-set and a list of fitted primitives [10]. The goal is to
further automate the recovery process by automatically finding an FRep model
from a segmented point-set as described in the next section. Once a model is
obtained it is possible to parameterize it and further reuse the parameterized
model.

The algorithm proposed in the following relies on the existence of a segmenta-
tion of a point-set and a list of primitives fitted to the segmented point-set. The
same algorithm can be applied to recover a FRep model from a boundary rep-
resentation (BRep), since the BRep model naturally provides both the point-set
and the primitives.

Description of the Algorithm. Let us suppose that we have a set of points
{p1, . . . ,pn} on or near the surface of the solid and a set of primitives {f1, . . . , fm}
fitted to the segmented point-set. Given a finite set of possible operations that can
be applied to these primitives {λ1, . . . , λl}, we are searching for an ordering of the
primitives with operations acting on them according to the formula:

fi1λj1 . . . fim (4)

which is a correct FRep model for the solid defined by the point-set. In the
above expression, jk ∈ {1, . . . , l}, and the set {i1, . . . , im} is obtained from the
set {1, . . . , m} by a bijection and is used to order the primitives. A correct FRep
model means that the defining function f = fi1λj1 . . . fim satisfies f > 0 inside
the solid, f < 0 outside the solid and f = 0 on the boundary of the solid, defined
by the discrete set of points.

If this formula is evaluated from left to right, it is clear that it corresponds
to a tree structure (left unbalanced) with operations in the internal nodes and
primitives in the leaves. Evaluation from left to right, using an intermediate
variable temp, is done as follow:

temp ← fi1 λj1 fi2

temp ← temp λj2 fi3

. . .

temp ← temp λjm−1 fim (5)
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The representation in Eq. 4 comes from the fact that we want to encode each
FRep model in an individual string to be processed by the genetic algorithm.
This representation suits well the encoding, and is easy to evaluate.

The question is whether any constructive FRep model can be encoded in
that way. If the operations are only set-theoretic, then any FRep model can be
represented by a left unbalanced representation. Using DeMorgan transforma-
tions: X \ Y → X ∩ Y , X ∩ Y → X ∪ Y , X ∪ Y → X ∩ Y , and (X) = X , we
transform the expression to an equivalent expression containing only ∪ and ∩.
Then exploiting the fact that ∪ and ∩ are commutative: X ∪ Y = Y ∪ X and
X ∩ Y = Y ∩ X , we can switch internal nodes of the formula to obtain a left
unbalanced representation. Using blending operations [32], union or intersection,
the representation of a constructive FRep model by a left unbalanced represen-
tation is still possible when the blend is symmetric; if the blend is not symmetric,
then the operations are not commutative, and a left unbalanced representation
may not exist. Unary operations like space deformations: rotations, scaling or
any other inverse space mappings, do not pose any problems at all and can be
appended to the primitives.

Note that, using DeMorgan laws to transform a constructive tree to a left
unbalanced tree introduces the complement of point-sets. Practically it means
that the primitives are oriented. When converting BRep models to FRep models
it may generally be the case, since the BRep model requires a global and consis-
tent orientation. When fitting primitives to a point-set, the orientation can be
obtained from the orientation of the point-set, which is a difficult problem [15].

Because the points {p1, . . . ,pn} belong to the surface of the solid, a cor-
rect FRep model should be equal to 0 at each point. With the notation, f =
fi1λj1 . . . fim , it means ∀pi, f(pi) = 0. The problem can be reformulated as the
search of a formula f such that

∑
pi

f(pi)2 is minimum. A genetic algorithm
is used for the minimization problem. This problem is combinatorial and the
genetic algorithm is used to perform two tasks: to find the order the primitives
and to find the correct binary operations to apply between two primitives.

An individual of the population represents a possible solution to the problem.
In this case, it is a left unbalanced expression of a constructive FRep model as
illustrated by Eq. 4 (this is the phenotype or what exactly is the individual in the
real world). Each individual contains m pairs of integers (opk, Lk), 1 ≤ k ≤ m,
corresponding to the type of operations – opk is an index to one of the operations
from the set of possible operations – and Lk the position of the primitive k in
the expression. The operation, indexed by opk, is applied between the primitive
k and the preceding primitive, at the position Lk − 1, in the reconstructed
expression. One pair is encoded by a bit string (a gene). The aggregate of the
genes, encoding the pairs, describes the individual’s genotype. The expression
encoded in an individual contains m operations, but a FRep expression using m
primitives has in fact only m − 1 operations: one of the encoded operations is
not used in the expression but is kept for the representation, i.e. appears in the
genotype.
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Relation with Genetic Programming. Genetic programming evolves com-
puter programs by applying the Darwinian process of evolution [21] to them.
It is similar to a genetic algorithm, with the difference that the data structure
used to encode the program (the solution of the problem) is a tree of potentially
infinite size. The approach, that we used here, looks like genetic programming,
but the size of the representation is of fixed length; consequently there are no
advantages in using genetic programming.

In fact, using genetic programming would result in long expressions with re-
dundant information, such as, for example, the sub-expressions: f ∨ f (union of
the solid with itself), f ∧ f (intersection of the solid with itself). Genetic pro-
gramming can also lead to sub-expressions like f \ f which corresponds only to
the boundary of the solid defined by f and is not suitable in solid modeling.
However such an expression evaluates to 0 on the subset of points corresponding
to the fitted primitive f and will not penalize the fitness function. Tracking such
invalid sub-expressions or redundant information can only be done at the end,
with algorithms for symbolic simplification.

Description of Solids and Primitives. A necessary condition, to be able to
represent the solid by a constructive FRep model, given in the form of Eq. 4, is
that the list of primitives is sufficient to describe the solid. Shapiro and Vossler
proved in the work [37] that boundary patches on the surface may not be enough
to describe the same solid by CSG and that extra halfspaces may be needed to
create a CSG representation of the same model. They describe how to detect
such cases and how to construct these additional halfspaces.

We illustrate this problem in Fig. 2. The left part shows a boundary represen-
tation of a simple two-dimensional object. Building a constructive representation
of this object, given the boundary patches, is however not possible. An additional
halfspace is required as illustrated in Fig. 2, right.

The final CSG representation of the solid is obtained by taking the union of
the disk with the additional halfspace, and then intersecting this solid with the
remaining halfspaces:

f = a ∨ b ∧ c ∧ d ∧ e

The algorithm proposed here does not automatically induce additional half-
spaces. They need to be detected and constructed by the algorithm of Shapiro
and Vossler [37] and inserted in the list of primitives. In some cases, however,
circular or spherical shapes are used to smoothly blend surfaces together; in
these cases, additional halfspaces are not required by our algorithm, because the
circular/spherical shapes are incorporated in the blending operations, which can
be used as valid operations. We also noticed that when the algorithm is applied
to the recovery from a point-set the need of extra halfspaces is dependent on the
segmentation and fitting algorithms. In the example used above, if a rectangle is
fitted instead of a collection of segments, then the extra halfplane is not needed
because it is already embedded in the rectangle.
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Fig. 2. Additional halfspaces may be required to build a constructive representation
from a boundary representation. The left object is a boundary representation of a
simple two-dimensional solid. The right object contains an additional halfspace, which
is needed to build a constructive representation of the solid.

Implementation of the Constructive Tree Recovery Algorithm. The
genetic algorithm is implemented in C++ language using the GALib library
[43]. A simple genetic algorithm, as introduced and discussed by Goldberg [14],
is used. This genetic algorithm uses non-overlapping populations. For each gen-
eration, a new population is created by selecting from the previous population,
and mating to produce the offsprings for the new population. These two steps
are repeated until the termination criterion is met.

The fitness function is defined by:

φ(g) =
∑

pi∈S

Fg(pi)2 (6)

where g is an individual in the current population; S is the point-set, with points
on or near the surface of the solid; Fg is the FRep encoded by the individual g
and corresponds to a left unbalanced tree (Eq. 4).

We use a one dimensional binary string (’GA1DBinaryString’) as the data
structure to encode an individual’s genotype in the genetic algorithm. As ex-
plained above, an individual corresponds to an array of m pairs (opk, Lk), 1 ≤
k ≤ m, where opk is an index to one of the operations, and Lk is the priority
level – or position – of the primitive k in the expression. Each pair is encoded
as a sequence of bits (a gene).

We use an example to explain in more details how the decoding and encoding
of the individuals are performed; this example consists of 16 primitives and the
possible operations are union, intersection and blending intersection. Each pair
(opk, Lk) can then be encoded by a gene of size 2 + 4 = 6 bits. An operation
opk can be encoded in 2 bits, since three operations are considered. The last 4
bits are used to encode the index of the kth primitive (priority level) Lk in the
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expression construction. An expression (phenotype) is thus encoded by a string
of size 6 ∗ 16=96 bits, i.e. an array of 16 genes of size 6 bits.

For a given binary string, we need also to be able to reconstruct the expression
to evaluate it, i.e. finding the phenotype of an individual from its genotype. First,
each gene, corresponding to a string of bits, is decoded to a pair of integers
(opk, Lk). Then we use the following procedure:

– select the next pair (opk, Lk) with the lower Lk value
– in case of several pairs with same Lk value, take the one with the minimal

index k in the initial list

This procedure sorts the pairs within the array with respect of the priority
level Lk of the primitive in the expression. It orders the primitives within the
expression. This procedure is illustrated by the following example. Let a string
be encoded by 16 pairs (opk, Lk), where opk ∈ {0, 1, 2}, and Lk ∈ {0, .., 15}.
k = 1 : (0, 15), k = 2 : (0, 1), k = 3 : (1, 0), k = 4 : (1, 2), k = 5 : (1, 1),
k = 6 : (1, 0), . . . , k = 16 : (1, 7).

Following the procedure described above, we select the pairs in the follow-
ing order: 3, 6, 2, 5, 4 . . . 1 and then the reconstructed expression becomes:
F = (op3)f3op6f6op2f2op5f5op4f4...op1f1. The first operation is in parenthesis
because it is not taken into account in the evaluation and is here only for the
symmetry of the expression. Finally each operation can be replaced. Let us sup-
pose that opi == 0 corresponds to union (|), opi == 1 for intersection (&),
and opi == 2 for blending intersection (&&); we get the following expression:
F = f3&f6|f2&f5 . . . |f1. This expression is evaluated from left to right using R-
functions or SARDF operations. The evaluation of this expression at each point
of the point-set serves to define the fitness function for the given individual
(Eq. 6).

We need to define now the genetic operations on the individuals. There are
at least three operations that need to be defined for a genetic algorithm:

– the selection (selection of individuals in the previous population),
– the crossover (mating selected individuals to create new offspring),
– the mutation (mutate the selected individual)

Selection: The selection is implemented by the roulette wheel algorithm. The
idea of the roulette wheel is to choose randomly between all the individuals of
the current population, with a higher probability to select an individual with a
good fitness value.

Mutation: The first algorithm used for the mutation is a random flip of bits. If
an individual is selected for a mutation, then 1 bit of the individual is chosen
randomly and flipped (meaning that if the value of the chosen bit were 1 then
it would become 0 and 0 would become 1). This algorithm is the default one. It
is however not aware of the problem representation.

We have also implemented a different algorithm taking into account the struc-
ture of the problem. Let us suppose, that there are m pairs, and that a pair is
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coded using p bits as a gene. Note that with the example above m = 16 and
p = 6. If an individual is selected for a mutation, then the mutation is done as
follows:

1. choose randomly a position in the string
2. find the beginning of the p-bit sequence it belongs to
3. flip all the p bits of the sequence

Crossover: The default crossover operation is a one point crossover. Two indi-
viduals are selected from the previous population to be mated, then one point
is chosen randomly in both individuals and the different parts are swapped. By
default, it is not aware of the structure of the problem, therefore the following
crossover can be used:

1. choose randomly a position in the string of parent 1
2. find the beginning of the p-bit sequence it belongs to
3. find the symmetric position in the parent 2
4. swap the subparts of the parents to generate the two children

The experimental results on the constructive tree recovery are described in
the next section.

4 Experimental Results and Applications

4.1 Experiments with Fitting Template FRep Models

Fitting template models is illustrated in the following through several examples.
At first template models for a mechanical part and a sake pot are fitted to
point-sets. Then, the application of template models fitting for finite element
remeshing is described.

Simple CAD Part. The first test part contains 10714 points scattered on the
surface. The FRep defining function F shown below is used as a parameterized
model for the recovery process:

f(x,a) := (box(x, a)\cylinderZ(x,a))
\cylinderZ(x, a); (7)

This FRep model consists of three simple primitives: one box and two infinite
cylinders oriented along the Z axis; each primitive is defined by its parameter-
ized model. For example, in the case of the cylinder, the defining function is:
cylinderZ(x, a) := a[1] − sqrt((x[1] − a[2])2 − (x[2] − a[3])2), where a[1], a[2],
and a[3] are parameters meaning the radius and a point on the x − y plane,
through which the axis of the cylinder passes. All the primitives are combined
together using the subtraction operator \, which is itself defined analytically by
an R-function as discussed in [31].
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Twelve parameters are released in the model, corresponding to the lower-left
corner of the box, the three dimensions of the box, and the center and radius for
each of the cylinders. The fitting algorithms need an initial estimation for the
parameters, in the tests we use two sets of initial values configurations: one is
close to the best fit (set1), in contrary to the second one (set2).

Table 1. Time (in seconds) taken by each method to converge to the best fit and
the least-square error (sum of the deviations squared) of the best fit for each set of
initial values. QN stands for Quasi-Newton, SA for simulated annealing, and SAQN
is an hybrid algorithm consisting in a combination of the simulated annealing and
Quasi-Newton algorithms.

Time Least
in sec square error

set1 set2 set1 set2
QN 1.852 9.643 5.47 595.04
SA 1635.09 1773.109 5.49 5.49
SAQN 72.042 144.177 5.47 5.47

The results of the tests are given in terms of the following: least square error
of the reconstructed model for the three methods: Quasi-Newton (QN), simu-
lated annealing (SA), and hybrid method simulated annealing – Quasi-Newton
(SAQN) (see Table 1), time given in seconds taken to converge to the best fit
for each of these methods (see Table 1), and the visual shape of the best fit
(Fig. 3).

Fig. 3. Shapes for the best fitted FRep in two cases: (right) the best fitted object does
not correspond to the real object when starting with set2 and using the QN method;
(left) the best fitted object corresponds to the real object when starting with the set2
and using the hybrid method.

Table 1 shows that the local method stops at a local minimum for the set2 of
initial parameters, resulting in a wrong shape (Fig. 3, right shape), whereas with
simulated annealing, it always converges to the global minimum. Unfortunately,
the counterpart is the slow rate of convergence for the sampling method (Table 1).
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When using a combination of SA and QN, we can recover correct parameters
and shape (Fig. 3, left shape, and Table 1, last line). The steps of the shape
evolution during the hybrid method search are shown in Fig. 4. Experimentally,
a combination of SA and QN avoids local optima with a better convergence rate
than SA alone.

Fig. 4. Evolution of the shape during the fitting process using the hybrid method

Lacquer Ware Sake Pot. The next example is the fitting of a model of a
hand-crafted lacquer ware pot, which is used for pouring sake (Japanese rice
wine). The discrete data set of the sake pot includes 27048 3D points, scattered
on the surface of the object. The parameterized model of the sake pot sketched
and discussed in the work on cultural heritage [42] is reused in our experiment.
The parameterized model was created using hand measurements of a typical sake
pot. The major parameters are the coordinates of the origin (position), the basic
radius of the pot body, and the height of the pot handle. The model is required
to keep basic ratios of the measured sample object and to proportionally change
the dependent parameters like those of the blend area between the spout and the
body, and the shape of the lid holder (note non-linear changes of these shapes
in Fig. 6).

The first fitting test is made using a Quasi-Newton algorithm. At the end of
the algorithm, the value of the fitness function is big enough to indicate that
the method stopped at a local minimum. A comparison of the discrete model
and the fitted parameterized FRep, illustrated by Fig. 5, indicates that the best
fitted parameters correspond to a local minimum of the fitness function.

A hybrid algorithm, combining Simulated-Annealing and Quasi-Newton is
used to go to the vicinity of the global optimum. The initial vector of para-
meters at the start of the process is the same as the one used before. In our
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Fig. 5. Local minimum effect: result of the fitting with a local method starting with
initial parameters far from the global optimum. The point-set for the sake pot is also
displayed for comparison.

Fig. 6. Evolution of the shape of the sake pot during the fitting process
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experiments, the Simulated-Annealing algorithm is stopped after the value of the
fitness function goes below a threshold given by the user in order to determine
the final switch to a Quasi-Newton method. The current shape is confirmed by
visual feedback. Then, the obtained parameters are reused as initial values for a
final call to the Quasi-Newton method. The steps of the evolution of the shape
during the hybrid fitting of the FRep model can be seen in Fig. 6.

Application in Finite Element Meshes (FEM)

Approaches to FEM generation. Surface remeshing is very important for ap-
plications associated with numerical simulation procedures, in particular with
finite element analysis (FEA). These applications impose strict constraints on
the quality of the surface approximation and on the shapes and sizes of mesh
elements. Moreover, finite element meshes have to be adapted both to phys-
ical and geometric features of computational tasks. Changes in the boundary
or initial conditions of the simulated process may cause remeshing even if the
computational domain remains the same.

In many cases the initial description of computational domains in FEA is repre-
sented by their boundary surface triangulations. These triangulations can be ex-
ported from various modeling systems, produced by 3D scanning, or be a result
of previous FE computations. Usually these initial triangulations consist of badly
shaped triangles and are not adapted to physical conditions and an appropriate
remeshing is required. Mesh refinement and optimization procedures need accu-
rate information about the geometry of the computational domain. Therefore, the
creation of an adequate description of a solid based on the initial triangulation of
its boundary surface is an important problem for the FE mesh generation and opti-
mization. Different approacheswere considered to solve this problem. In [12], finite
element adaptation is based on the local approximation of the underlying surface
geometry by a quadric surface. The authors of [20] convert a CAD model into a
volume representation by sampling its distance field on a uniform grid and then
applying the extended marching cubes algorithm to this volume.

Taking into account that many mechanical parts can be represented as con-
structive solids, we propose to apply FRep recovery to support FE mesh gen-
eration for objects whose initial geometry is represented by boundary surface
triangulations. The initial mesh is used for the selection or creation of a para-
meterized FRep model. Then, the parameters of the FRep model are fitted to
the vertices of the mesh. The final model can be used for the surface and volume
finite element adaptation by the methods described in [18].

Fitting to a CAD mesh. As an example of application of the FRep shape recovery
for the FEM generation, a parameterized FRep model corresponding to the
CAD mesh Fig. 7 (top, left) is created and fitted using the previously proposed
techniques.

The FRep model including 14 parameters is sketched corresponding to the
shape shown in Fig. 7, top, left; the initial values for the parameters are chosen
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randomly. The convergence is obtained using an hybrid simulated annealing/
Quasi-Newton scheme. The FRep shape corresponding to the best set of para-
meters is shown in Fig. 7, top, right.

Starting with the acquired FRep model, it is then possible to apply the mesh
adaptation methods from [18]. The results of such methods are shown in Fig. 7,
bottom. The left picture shows an optimized surface mesh, which was then used
for the 3D tetrahedral mesh generation (right) using the extended advancing
front method [18].

Fig. 7. A surface mesh, generated by a CAD system (top, left), the recovered shape
(top, right), the associated optimized mesh (bottom, left), and the 3D tetrahedral
mesh generated from it (bottom, right). The original BRep model and the generated
optimized and 3D tetrahedral meshes are courtesy of Elena Kartasheva.

4.2 Constructive Tree Recovery Using a Genetic Algorithm

The genetic algorithm is applied to recover constructive trees for some mechan-
ical parts. The input of the algorithm is a set of points scattered on the surface
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of the solid and the primitives associated with the segmentation of the point-set.
Point-set segmentation and fitting of primitives to the different subsets of the
segmented point-set are obtained by a brute force algorithm. A genetic algo-
rithm is run on a list of primitives (cube, box, sphere, torus, ellipsoid), the best
fitted primitive is selected and the corresponding points from the point-set are
removed, then we loop to the first step until the point-set contains only a few
points. Primitives are defined by Euclidean distance functions and set-theoretic
operations are implemented using the SARDF operations (described elsewhere
in this volume).

Example 1. The first example involves a point-set of 9530 points and 10 primi-
tives. These primitives include planes, spheres and cylinders and were recovered
using a brute force genetic algorithm as described above. In fact, a box was
fitted instead of planes, but we decided to use the planes to increase the num-
ber of primitives. It should be noticed that the use of a different segmentation
algorithm may have produced such planes instead of a box.
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Fig. 8. Top: Evolution of the fitness of the best individual for a population of size 1000;
Bottom: Result for the best individual for the first mechanical part
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We used the genetic algorithm and the genetic operations described above to
recover the constructive tree of the object. We used a probability of 0.1 for the
mutation and of 0.6 for the crossover. Figure 8, top, illustrates the convergence
after 200 generations of an initial population of size 1000.

The solid resulting from the best individual is given in Fig. 8, bottom.

Example 2. The second example involves a point-set of 49388 points segmented
into 10 primitives. The same parameters as above are used for the size of pop-
ulation, probability of crossover and probability of mutation. Figure 9, top, il-
lustrates the convergence after 200 generations of a population of size 1000. The
solid obtained from the best individual is illustrated by Fig. 9, bottom.
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Fig. 9. Top: Evolution of the fitness of the best individual for a population of size 1000;
Bottom: Result for the best individual for the second mechanical part

Comparing figures 8 and 9, we find a higher fitness value for the second ex-
ample. It can be explained by a bigger number of points in the point-set used:
the second point-set is approximately 5 times bigger. It can also be explained
by a different approximation in fitting the primitives. The number of points in
the point-set has some importance. If the number is too big, it slows down the
evaluation of the fitness function and the speed of the algorithm convergence.
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5 Conclusion

The automation of function-based volumetric modeling is approached in this
work with involvement of some additional information on the object shape, for
example, an existing model for a family of similar objects or a scanned surface
data of a physical instance of the object to be modeled. Some objects do indeed
belong to more general families of similar objects: for example several vases may
possess the same structure and overall shape. Another example is human body,
which is unlikely to radically change its shape in the near future. Once a model
has been made for an object, it can be abstracted by a template model, where
each of the most important parameters have no specific values and will be fitted
to adapt the model to other instances of the same object type.

We have introduced new algorithms for template FRep models fitting, which
rely on the combination of heuristic methods – such as simulated annealing
or genetic algorithms – with gradient based methods – such as Quasi-Newton
or Levenberg-Marquardt. Template models and the proposed fitting algorithms
have been illustrated by fitting different examples of template models for me-
chanical parts and a more complex sake pot to discrete point-sets. A different
mechanical part was used to illustrate an application of fitting template models
in remeshing for finite element applications.

We have also introduced a new algorithm for the recovery of constructive FRep
models from segmented point-clouds and the associated set of primitives. The
search is performed by a genetic algorithm which looks for the best expression
involving the primitives. The proposed algorithm is not restricted to the set-
theoretic operations, and can be extended, by using blending operations. From
the recovered constructive FRep models, it is possible to make a parameterized
FRep template model that can be reused in fitting, mesh optimization or other
operations.

The modeling process can be greatly automated by reuse of template models
and their optimization. The idea of the template model can be extended in some
directions. We studied only the optimization of the shape minimizing the alge-
braic distance to a point-set, but different optimizations and objective functions
can be experimented leading to more general shape optimization. The idea of
parameterized templates leads to a more general idea of the automation of the
properties modeling for heterogeneous objects. Similarly to the parameterization
of object shapes, the geometry of space partitions associated with attributes can
be parameterized and fitted to satisfy some modeling constraints.

References

1. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: SMA 2001: Proceedings
of the sixth ACM symposium on Solid modeling and applications, pp. 249–266.
ACM Press, New York (2001)

2. Batchelor, B.G.: Hierarchical shape description based upon convex hulls of concav-
ities. Journal of Cybernetics 10, 205–210 (1980)



Automation of the Volumetric Models Construction 237

3. Benko, P., Kos, G., Varady, T., Andor, L., Martin, R.: Constrained fitting in reverse
engineering. Computer Aided Geometric Design 19(3), 173–205 (2002)

4. Benko, P., Varady, T.: Direct segmentation of smooth, multiple point regions. In:
Proceedings of GMP, pp. 169–178 (2002)

5. Blinn, J.: A generalization of algebraic surface drawing. ACM Trans. Graph 1(3),
235–256 (1982)

6. Buchele, S.F., Crawford, R.H.: Three-dimensional halfspace constructive solid
geometry tree construction from implicit boundary representations. Computer-
Aided Design 36(11), 1063–1073 (2004)

7. Dennis, J.E., Gay, D.M., Welsch, R.E.: An adaptative nonlinear least-squares al-
gorithm. ACM Transaction on mathematical software 7, 348–368 (1981)

8. Faber, P., Fisher, R.B.: Pros and cons of Euclidean fitting. In: Radig, B., Florczyk,
S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 414–420. Springer, Heidelberg (2001)

9. Fayolle, P.-A., Pasko, A., Kartasheva, E., Mirenkov, N.: Shape recovery using func-
tionally represented constructive models. In: Proceedings of International Confer-
ence on Shape Modeling and Applications 2004 (SMI 2004), pp. 375–378 (2004)

10. Fayolle, P.-A., Pasko, A., Mirenkov, N., Rosenberger, C., Toinard, C.: Construc-
tive tree recovery using genetic algorithms. In: Procedings of the International
Conference on Visualization, Imaging and Image Processing (2006)

11. Fayolle, P.-A., Rosenberger, C., Toinard, C.: 3d shape reconstruction of template
models using genetic algorithms. In: Proceedings of 17th International Conference
on Pattern Recognition (ICPR 2004), pp. 269–272 (2004)

12. Frey, P.J., Borouchaki, H.: Geometric surface mesh optimization. Computing and
visualization in science 1(3), 113–121 (1998)

13. Freytag, M., Shapiro, V., Tsukanov, I.: Field modeling with sampled distances.
Computer Aided Design 38(2), 87–100 (2006)

14. Goldberg, D.: Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Reading (1989)

15. Hart, J.C.: Distance to an ellipsoid. In: Heckbert, P. (ed.) Graphics Gems IV, pp.
113–119. Academic Press, Boston (1994)

16. Holland, J.H.: Adaptation in natural and artificial systems. The University of
Michigan Press, Ann Arbor (1975)

17. Hoppe, H.: Surface reconstruction from unorganized points, Ph.D. thesis, Univer-
sity of Washington (June 1994)

18. Kartasheva, E., Adzhiev, V., Pasko, A., Fryazinov, O., Gasilov, V.: Surface and
volume discretization of functionally based heterogeneous objects. Journal of Com-
puting and Information Science in Engineering, Transactions of the ASME 3(4),
285–294 (2003)

19. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220, 671–680 (1983)

20. Kobbelt, L., Botsch, M., Schwanecke, U., Seidel, H.-P.: Feature sensitive surface
extraction from volume data. In: Procedings of SIGGRAPH 2001, pp. 57–66. ACM,
New York (2001)

21. Koza, J.: Genetic programming. MIT Press, Cambridge (1992)
22. Marshall, D., Lukacs, G., Martin, R.: Robust segmentation of primitives from range

data in the presence of geometry degeneracy. IEEE Transactions on pattern analy-
sis and machine intelligence 23(3) (2001)

23. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations
of state calculations by fast computing machine. J. Chem. Phys. 21, 1087–1092
(1953)



238 P.-A. Fayolle et al.

24. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs.
Springer, Heidelberg (1996)

25. More, J.: The levenberg-marquardt algorithm implementation and theory. Lecture
notes in mathematics No630 Numerical analysis 630, 105–116 (1978)

26. Morse, B., Yoo, T., Chen, D., Rheingans, P., Subramanian, K.: Interpolating im-
plicit surfaces from scattered surface data using compactly supported radial basis
functions. In: Proceedings of Shape modeling international, pp. 89–98 (2001)

27. Muraki, S.: Volumetric shape description of range data using ”blobby model”. In:
Proceedings of SIGGRAPH, pp. 227–235 (1991)

28. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.-P.: Multi-level partition
of unity implicits. ACM Trans. Graph 22(3), 463–470 (2003)

29. Ohtake, Y., Belyaev, A., Seidel, H.-P.: Ridge-valley lines on meshes via implicit
surface fitting. ACM Trans. Graph 23(3), 609–612 (2004)

30. Ohtake, Y., Belyaev, A., Seidel, H.-P.: An integrating approach to meshing scat-
tered point data. In: SPM 2005: Proceedings of the 2005 ACM symposium on Solid
and physical modeling, pp. 61–69. ACM Press, New York (2005)

31. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in
geometric modeling: concept, implementation and applications. The Visual Com-
puter 11(8), 429–446 (1995)

32. Pasko, A., Savchenko, V.: Blending operations for the functionally based construc-
tive geometry. In: set-theoretic Solid Modeling: Techniques and Applications, CSG
1994 Conference Proceedings, pp. 151–161. Information Geometers (1994)

33. Press, W., Flannery, B., Teukolsky, S., Vatterling, W.: Numerical recipes in c - the
art of scientific computing. Cambridge University Press, Cambridge (1992)

34. Rvachev, V.L., Kurpa, L.V., Sklepus, N.G., Uchishvili, L.A.: Method of r-functions
in problems on bending and vibrations of plates of complex shape (in Russian)
(1973)

35. Savchenko, V., Pasko, A., Okunev, O., Kunii, T.: Function representation of solids
reconstructed from scattered surface points and contours. Comput. Graph. Fo-
rum 14(4), 181–188 (1995)

36. Shapiro, V.: A convex deficiency tree algorithm for curved polygons. International
Journal of Computational Geometry and Applications 11(2), 215–238 (2001)

37. Shapiro, V., Vossler, D.L.: Separation for boundary to csg conversion. ACM Trans.
Graph 12(1), 35–55 (1993)

38. Shepard, D.: A two-dimensional interpolation function for irregularly spaced data.
In: Proceeding 23 National Conference, vol. 23, pp. 517–524. ACM, New York
(1968)

39. Turk, G., OBrien, J.: Shape transformation using variational implicit functions. In:
Proceedings of SIGGRAPH, pp. 335–342 (1999)

40. Vanco, M.: A direct approach for the segmentation of unorganized points and recog-
nition of simple algebraic surfaces, Ph.D. thesis, Technische Universität Chemnitz
(2003)

41. Varady, T., Martin, R.R., Cox, J.: Reverse engineering of geometric models – an
introduction. Computer Aided Design 29(4), 255–268 (1997)

42. Vilbrandt, C., Pasko, G., Pasko, A., Fayolle, P.-A., Vilbrandt, T., Goodwin, J.,
Goodwin, J., Kunii, T.: Cultural heritage preservation using constructive shape
modeling. Comp. Graph. Forum 23(1), 25–41 (2004)

43. Wall, M.: A c++ library of genetic algorithm components (1996), http://lancet.
mit.edu/ga

44. Woo, T.C.: Feature extraction by volume decomposition. In: Proc. Conference on
CAD/CAM Technology in Mechanical Engineering, Cambridge, MA (1982)

protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://lancet.mit.edu/ga
protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://lancet.mit.edu/ga


Heterogeneous Modeling of Biological Organs

and Organ Growth
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Abstract. The growth of the organs of human embryo is changing sig-
nificantly over a short period of time in the mother body. The shape
of the human organs is organic and has many folds that are difficult
to model or animate with conventional techniques. Convolution surface
and function representation are a good choice in modelling such organs
as human embryo stomach and brain. Two approaches are proposed for
animating the organ growth: First, uses a simple line segment skeleton
demonstrated on a stomach model and the other method uses a tubular
skeleton calculated automatically from a 2D object outline. The growth
speed varies with the position within the organ and thus the model is
divided into multiple geometric primitives that are later glued by a blend-
ing operation. Animation of both the embryo stomach and brain organs
is shown.

1 Introduction and Previous Works

The purpose of this manuscript is to model the outer shape and the shape
metamorphosis during the growth of some human embryo organs, particularly
brain and digestive system. Popular methods like 3D shape reconstruction from
Computer Tomography (CT) sections or ultrasound data can not be used for this
type of modelling because the resolution of the devices used in those methods
are much higher comparing to the size of human embryo. Four weeks old embryo
is approximately 3 mm tall while the CT resolution is 1 mm giving us only three
sections for a reconstruction process. Usually, the microscopic cross-sections are
used to reconstruct the polygonal representation of an embryo, which is exact but
complicated process. In case of such destructive approach often a mouse embryo
is used instead of the human embryo [1]. To control the shape metamorphosis
between two mesh objects become a problem when they have different topology
and geometry. To create the realistically looking human organ models and to
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generate the animations demonstrating the growth process requires a proposed
methodology.

Growing human organs can be described as dynamical systems with a dynam-
ical structure [2]. In such systems not only the values of variables characterizing
system components, but also the number of components and the connections
between them, may change over time. There is a need to construct a mathe-
matical description of a system. The model can then be used for simulation or
optimization. All models are predictive in the meaning that simulation output
predict what could occur in the real world where the system is operating. Numer-
ous interdisciplinary research initiatives are generating excellent research results
with regards to modelling, simulation and visualization of human anatomy and
physiology. These research initiatives focus on different (biological) levels [3];
molecular and cellular levels, tissue [4] and organ levels [5], [6], [7], and system
and human (organism) levels.

The simulation of human organs growing can be seen as an imitation of the
reality for studying the effect of changing parameters in a model as a means
of preparing a decision or predicting experiment results. Since the human body
is mainly made up of a variety of organs, the medical consequence of organ
modelling is very important, ranging from heart surgery to minimally-invasive
surgery.

In the area of modelling and simulation of human organs many research works
have been carried out. One class of reconstruction methodologies uses implicit
functions. They allow extracting an iso-surface either by a procedural method,
or skeletal implicit surfaces (surfaces generated by a field function and a skele-
ton). Amrani introduced a method using the skeleton-based implicit surface for
implicit reconstruction [7].

Another construction method is presented by Leymarie. His approach is based
on propagation along the scaffold from initial sources of flow as a means to
efficiently construct it. The detection of these sources can be shown to be reduced
to considering pairs of input points, which then constitutes the computational
bottleneck of this method [8].

A semi-automatic reconstruction method that can be used on noisy scattered
points of a medical organ is presented by Tsingos [5]. The method is based on
implicit iso-surfaces generated by skeletons that provide a smooth and compact
representation of the surface. The user can guide the reconstruction by initializ-
ing some skeletons and their reconstruction windows, thus taking benefits of his
initial knowledge of the data.

The method developed by Attali et al. [9] computes the Voronoi graph of the
point set to build the skeleton of the object and reconstructs its surface. The
surface thus reconstructed has only fixed topological type.

Even though the convolution surfaces provide nice blending between sev-
eral parts of organs, the control of the blend shape is very limited. The func-
tional representation [10] is a tool that generalize the set theoretic operations
and generates full range of shapes from simple object union to smooth blend.
The animation of such surfaces follow the changes smoothly, even if the topol-
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ogy changes. Because of this advantage the functional representation become a
popular tool where the shapes to be modelled are from the natural world. We
explain here our modelling experience that can be useful for others.

2 Shape Representation for Growth Animation

The polygonal models can not capture the development of such complex process
as the growth of the digestive system. So far, we have created the skeletons of
different physiological parts, we need to blend them together to get the smooth
shapes. Even though, the convolution surfaces provide nice blending between
several parts of organs, the control of the blend shape is very limited. The func-
tional representation is a tool that generalizes the set theoretical operations and
generates full range of shapes from simple object union to smooth blending. The
animation of such surfaces follow the changes smoothly, even if the topology
changes. Because of this advantage the functional representation is an excel-
lent tool when the shapes to be modelled are from the natural world. We discuss
herein the shape modeling based on skeleton calculated from dynamic simulation
and L-system growth.

An implicit surface is defined by an isosurface of some potential field F :
R3 → R at threshold level T : S = {p ∈ R3 : F (p) − T = 0}. The function F (p)
is also called an implicit function. A convolution surface is implicitly defined by
a potential function F obtained via convolution operator between a kernel and
all the points of a skeleton. The convolution surface thus obtained is a smoothed
skeleton. The skeleton is a collection of geometric primitives such as point, line
segment, arc and plane that outline the structure of an object being modelled.
Convolution surface build from complex skeletons can be evaluated individually
by adding the local potentials for each primitive, because convolution operator
is linear.3 Let us have N skeleton primitives the above statements can be written
as the following modelling equation in an implicit form:

N∑

i=1

Fi(x1, x2, x3) − T = 0, (1)

where Fi is the source potential of i-th skeleton primitive and T is the iso-
potential threshold value.

3 Function Representation

Let us consider closed subsets of n-dimensional Euclidian space En with the
definition:

f(x1, x2, ..., xn) ≥ 0,

where f is a real continuous function defined on En. The above inequality is
called a function representation (F-rep) of a geometric object and function f
is called the defining function. In three-dimensional case the boundary of such
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a geometric object is called implicit surface. The major requirement on the
function is to have at least C0 continuity. The set of points Xi(x1, x2, ..., xn) ∈
En, i = 0, ..., N associated with Eq. 3 can be classified as follows:

f(Xi) > 0 if Xi is inside the object,
f(Xi) = 0 if Xi is on the boundary of the object,
f(Xi) < 0 if Xi is outside the object.

Let us consider from now on the defining function given by the convolution
operator between a kernel and all the points of a skeleton, i.e. function F as
defined in the last equation of the previous section.

3.1 Set-Theoretic Operations

The binary operations on geometric objects represented by functions can be also
defined in the form of function representation by

F(f1(X), f2(X)) ≥ 0, (2)

where F is a continuous real function of two variables .10 Such operations are
closed on the set of function representations. After set theoretic operation be-
tween two subjects defined by functions f1 and f2 the resulting object has the
defining function as follows:

– For object union

f3 = f1|f2 ≡ 1
1 + a

(f1 + f2 +
√

f2
1 + f2

2 − 2af1f2),

– for object intersection

f3 = f1&f2 ≡ 1
1 + a

(f1 + f2 −
√

f2
1 + f2

2 − 2af1f2),

– for object subtraction

f3 = f1\f2 ≡ f1&(−f2),

where |, &, \ are notations of so-called R-functions and parameter a = a(f1, f2)
is the arbitrary continuous function satisfying the conditions

−1 < a(f1, f2) ≤ 1
a(f1, f2) = a(f2, f1) = a(−f1, f2) = a(f1, −f2).

Please, note that even thought the resulting defining function for set above the-
oretic operations is continuous, the resulting object is not continuous in general.



Heterogeneous Modeling of Biological Organs and Organ Growth 243

3.2 Blending Union Operation

Intuitively the blending union operation between two initial objects from the
set of function representations is a gluing operation. It allows us to control the
gluing type in the wide range of shapes from pure set union to convolution like
summation of terms. Mathematically the blending union operation is defined by

F(f1, f2) = f1 + f2 +
√

f2
1 + f2

2 +
a0

1 + ( f1
a1

)2 + ( f2
a2

)2
,

where f1 and f2 are functions representing objects that are blended. The absolute
value a0 defines the total displacement of the bending surface from two initial
surfaces. The values a0 > 0 and a1 > 0 are proportional to the distance between
blending surface and the original surface defined by f1 and f2, respectively. The
effect of this operation compared to other possible object connections is demon-
strated on two object primitives whose skeleton consists of two line segments
one vertical and the other one diagonal, see Figure 1 top-left. Simple plus opera-
tion between convolution functions deforms the thickness of vertical convolution
cylinders as shown in top-right image. Considering four line segments as a single
skeleton of geometric primitive results in the shape shown in top-center image.
The sequence of shapes shown on bottom of Figure 1 are the blending union
operations between two parallel geometric primitives. The geometric primitives
and their skeletons do not change but the blending parameters used to blend
them are different for each image. In orderer from left side the used parameters
are ai = 0.01, ai = 0.07, ai = 0.3, ai = 0.5, and ai = 0.7, respectively. We can
conclude that in the case when the shape and size of geometric primitives must
be preserved the blending union operation with different parameters a0, a1, and
a2 is a good choice. On the other hand when the blending shape is main concern
the convolution plus operation should be used. When both the shape of geomet-
ric primitives and that of blending are important the small values of blending
union parameters is a choice. The F-rep blending union operation has similar
advantages as simple convolution union with respect to minimizing unwanted
bulges.

4 Shape of Organic Models

In previous sections have been discussed the theory of F-rep and convolution
surfaces. As next, we will show a method to model the organic shapes by F-rep,
where each of the geometric primitives is defined by

N∑

i=1

Fi(x1, x2, x3) − T = 0,

where Fi are the source potentials of skeleton primitives i.e. points, lines or
triangles and T is a threshold value. Therefore, what we need to design next are
the skeletons for different organs.
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Fig. 1. Blending union operation. top: standard and bottom: Blending union operation.

4.1 Human Brain Model

First step in the model creation process is to obtain the size measurements of
brain and stomach stages from atlas of embryology. Embryological atlas contains
hand-drawing pictures and photographs of human embryo organs ordered by age.
For the purpose of this study the models from 28 - 56 days old brain were used.
The brain pictures has been scanned, stored in binary form and measured by
ruler. The model, at this stage of precessing, was divided into physiological parts
to suite the animation purposes. The outlines of physiological parts were drawn
over the pictures and photographs, see Figure 2.

4.2 Brain: Central Skeleton

The result of the measurements is a 2D planar contour, call the central skeleton,
nearly outlining the outer contour of the shape. Interior of central skeleton is
triangulated such that it crates a triangular strip. One can observe different
growth speed for different pars of embryo brain. It is therefore natural to divide
the central skeleton into those parts. Additional parts could be necessary to
model the folds and control the unwanted blending problem near the folding
areas. Figure 3, shows namely the part I corresponding to the part of brain
called rhombencephalon, part II will develop to mesencephalon and part III is a
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Fig. 2. The conversion of drawing human embryo brain to central skeleton

prosencephalon. The next step is to calculate the central line that will be used
as a base to define the thickness of the model along the line forming the tubular
object. Central line passes through the center of central skeleton, connecting the
mid points of vertical edges of a triangular strip.

part I 

part II 

part III 

Fig. 3. Dividing the central skeleton to 3 parts. The line in the middle of the central
skeleton is called central line.

4.3 Brain: Skeleton

By adding the thickness to 2D central skeleton the 3D skeleton of the model is
obtained. Multiple number of copies of central skeleton are slightly scaled and
shifted to left and right sides of central skeleton. By this way the cross sections
are produced which are then connected to form the tubular skeleton, see Figure 4:

– Each of side skeletons is scaled to fit the ellipses whose center is on the
central line. Radius a of the ellipse is a distance to the central line from the
border of the central skeleton. Radius b follows the equation, b = αa, where
α is a ratio parameter.

– As next step, for a given θ the side skeletons are translated by distance
t = c cos θ, where c is known from parametric equation of ellipse shown in
Figure 5.
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– Finally, side skeletons are connected with a central skeleton or with other
side skeletons by a triangular mesh.

– After erasing all interior triangular patches we obtain multiple tubular shapes
forming together the entire skeleton of the brain.

central
skeleton

side
skeletons

central line 

Fig. 4. Adding the thickness by scaling and shifting the central skeleton

central
skeleton

side
skeleton

b

a c

t

θ

y

z

y

z
x

Fig. 5. A 3D skeleton for 36 days old human embryo brain

4.4 Model of the Human Digestive System

To approximate the shape of an organ while considering the speed and direction
of cell growth at the same time, we group the entire set of cells into a number
of cylindrical bunches (clusters). Thus, the skeleton of the organ is defined by a
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chain of linear segments passing through the cluster centers, see Fig. 6. Organ
growth can then be modeled by the growth of the line skeleton, and variations
in shape thickness during the growth process can be captured by variations in
cylinder size. When a cylinder changed in size, it was understood that the organ
cells grew in the directions emanating from the cluster center. Similarly, when
the skeleton segment underwent changes in length, it was understood that the
cells included in two adjoined clusters grew in directions parallel to this segment.

Taking into account the development, the organs were divided into physiolog-
ical parts having different speed and direction of growth to suite the animation
purposes. The physiological parts of the intestine system are shown in Fig. 7
and marked I, II and III for stomach, marked IV for small intestine, marked VII
for large intestine, marked V for appendix, and marked VI for vitteline duct.
While refering to Langman’s embryology [11] we collected data that are shown in
Table 1. For each available embryo age (developmental stage) of large intestine
its mean thickness and skeleton length are listed. Statistical data for a human
embryo stomach have already been summarized by Ďurikovič et al.[2].

Fig. 6. Skeleton of the organ and the clusters

I.

II.

III.

IV.

V.

VI.

VII.

Fig. 7. Physiological parts represented with line skeleton
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Table 1. Shape measurements of large intestine, physiological part no. IV

Embryo age (day) Length (mm) Thickness (mm)
28 2.76 0.30 herniation
49 15.58 0.45
58 19.49 0.52
70 21.77 0.61 reduction
83 24.04 0.82

113 28.62 1.00 fixation

The organs, at this preprocessing stage, were divided into physiological parts
having different speeds and directions of growth to suite the animation purposes.

4.5 Digestive System: Skeleton

The topology of the digestive system is expressed by a tree structure and the
development of the tree-like structure can be easily modeled with an algebraic
L-system [12,13]. An L-system formalism was proposed by Lindenmayer [14],
and the method has been used as a general framework for plant modeling. The
L-systems are extended to by introducing continuous global time control over
the productions, stochastic rules for the capture of small variations, and explicit
functions of time used to describe continuous aspects of model behavior, in
addition to differential equations.

In some cases it is convenient to describe continuous behavior of the model
using explicit functions of time rather then differential equations. For example,
global shape transformations varying over time require a large and complicated
system of differential equations, while only few explicit functions of time are
sufficient for the description of these transformations.

4.6 Cell Model

Let’s move to a micro structure of muscle cell structures on the organelle level.
We present a modeling concept based on the theory of implicit surfaces that
allows for creation of a realistic infrastructure of the micro-world of muscle cells.
From the viewpoint of geometry, the structure of living cells is given by the three-
dimensional organization of their numerous intracellular organelles of various
sizes, shapes and locations.

4.7 Cell: Central Skeleton

The initial step involves creation of the central skeleton of the cell, which is
represented by a system of parallel cross-sectional graphs (c-graphs) distributed
along the longitudinal axis. We define the c-graph as a continuous planar graph
which divides the plane in a finite number of closed non-intersecting polygons.
Then we exploit the two-dimensional c-graphs to create the myofibrillar system
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1

2

3

4

5

6

7

Fig. 8. An example demonstrating eight consecutive sarcomeres of a muscle cell (left).
For better clarity, the sarcolemma is hidden and, also, the bottom part of the my-
ofibrillar system is clipped of by a transversal plane (middle). The complex system of
underlying skeletons is made visible by clipping with a longitudinal plane (right). The
myofibrillar system (1) is defined by means of c-graphs (2). The remaining organelles
include mitochondria (3), sarcoplasmic reticulum (4), t-tubules (5) and sarcolemma
(6); given in the basic repetitive unit, sarcomere (7).

by means of the F-rep representation of polygons and interpolation. For better
clarity, this concept is demonstrated in Figure 8.

In the following subsections we propose approaches for creation of the most
complex structures of muscle cells, reticulum and mitochondria.

4.8 Cell: Skeleton

The basic modeling object at this step is a set of seed points distributed in
a system of several cross-sectional planes as shown in Figure 9a. Let S =
{s1, s2, . . . , sn} stand for the set of seeds in one crossection. Each seed pro-
duces an implicit circle fi with an appropriate radius. The whole contribution
of S is represented by CSG union:

f(S) =
⋃

s∈S

fs. (3)

Similarly, we define the set R of seeds in a neighboring crossection. To create
a smooth junction between shapes f(S) and f(R) we apply an interpolation
method.

Assume that both shapes (sets of implicit circles) contain a set of control
points, P = {p1, . . . , pn} for the function f(S) and Q = {q1, . . . , qn} for the
function f(R). Moreover, vectors of correspondence are specified between these
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(a)
(b)

Fig. 9. (a) Seeds (here represented by the red spheres) are distributed in sets of parallel
planes. (b) A classical interpolation technique results in non-interconnected segments.

points, CP = {q1−p1, . . . , qn−pn} and CQ = {p1−q1, . . . , pn−qn}. The set CP is
attached to the set P, and the set CQ is attached to the set Q. Now, we create two
weighting displacement functions φp and φq, which represent transformations of
the given shapes in the directions defined by the vectors of CP and CQ. The
weighting displacement functions are defined by

φp(x) = x + h1(t)d1(x)
φq(x) = x + h2(t)d2(x), (4)

where h1(t), h2(t) represent weighting proportions within the interval < 0, 1 >,
and d1(x), d2(x) represent interpolation of control points given by vectors of
CP and CQ. To interpolate the displacement d1, d2 we adopt volume splines—
the so-called thin-plate function [15,16]. The weighting factors h1 and h2, i. e.
functions that specify the size of control point displacements, are defined as

h1(t) = (1 − ta)b

h2(t) = 1 − h1(t), (5)

where the parameters a, b modify the slope and curvature of the transition
(Fig. 10a).

To create the required smooth transformation without gaps, the linear inter-
polation is modified by the displacement functions, Eqs. 4:

Flt = (1 − t)f(S)(φp(x)) + tf(R)(φq(x)) + aw3(t), (6)

where aw3(t) is the additional blending term used to fine-tune interconnection
of shapes by adding material primarily in the central part of the interpolation
region. The parameter a stands for the amount of blending and the weighting
function w3(t) is defined as

w3(t) = (1 − (2t − 1)c)d, (7)

where the parameters c, d modify the slope and the curvature (Fig. 10b).
A result of this approach with three sets of seeds defined in three parallel

planes is depicted in Figure 11a.
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Fig. 10. (a) Weighting functions h1 and h2. (b) The weighting function w3 has the
maximum in the middle.

( )a ( )b

Fig. 11. Modeling of sarcoplasmic reticulum. (a) The final warping interpolation pro-
vides gap free interconnections. (b) The smooth junction between terminal cisterns and
tubes is obtained by the blended union.

The second step in the building process is formation of terminal cisterns.
These cylindrical shaped objects form a smooth junction to systems of longitu-
dinal tubules. Terminal cisterns are created as blended union of implicit cylin-
ders. Their underlying line segments are obtained by connecting the seeds in the
bottom most and the top most plane of the system of crossectional planes, see
Figure 11b.

4.9 Cell: Mitochondria

In order to capture the varying elliptical shape of mitochondria, we use implicit
sweep objects. The basic components of sweep objects are a 2D sweep template
and a 3D sweep trajectory. Here, the 2D template is a 2D implicit ellipse with
variable dimensions. Figure 12 demonstrates such a mitochondrion defined by a
trajectory specified by means of spline control points.

5 Organ Growth

Continuous processes such as the elongation of skeleton segments, and growth of
cell clusters, over time can easily be described by the growth functions. Growth
functions can be then included into algebraic L-systems as explicit functions
or differential equations. Growth is often slow initially, accelerating near the
maximum stage, slowing again and eventually terminating. A popular example
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Fig. 12. The curve, represented as a quadratic B-spline, is created from the control
points, where each has assigned corresponding radii and rotation angles (left). Note
end control points have specified also z radius for 3D ellipsoid. The resultant sweep
object is depicted on the right.

of the growth function [17] is the logistic function which is a solution to the
following differential equation

∂r

∂t
= p

(

1 − r

rmax

)

r ≡ grmax,p(r). (8)

Logistic function monotonically increases from initial value r0 to rmax with
growth rates of zero at start and end of time interval [T0, T ]. It is an S shape
function with a steep controlled by a parameter p.

The details of the L-system tables have been described by Durikovic [13]. He
has described the skeleton elongation, the global bending of the skeleton parts,
dynamics of skeleton structures, and growth functions.

6 Shape from Skeleton

The measured organ models discussed in previous section were divided into phys-
iological parts, at preprocessing stage, having different speed and direction of
growth to suit the animation purposes. A single physiological part has the shape
defined by the skeleton based F-rep. The skeleton of the physiological part can
be animated directly by a key-frame animation or we can use a sophisticated
methods to simulate the skeleton growth based on L-system or the dynamic
L-system.

6.1 Brain Shape

A smooth convolution surface defined over the triangular mesh of tubular skele-
ton creates the model of embryo brain. In order to create brain model with con-
volution surfaces, we use HyperFun1,9 as modelling library and POV-Ray8 as
rendering software. HyperFun command hfConvTriangle generates convolution
surface over the triangles which suites our problem. Let us discuss all parame-
ter settings for one particular example, the stage3 human embryo brain shown
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in Figure 13. The convolution kernel width is set to s = 0.5 and iso-potential
threshold value is T = 0.6. The ration parameters of brain thickness have been
set to α = 1.0 at parts I and II and to α = 1.2 at part III. Nice blending during
the animation can be guarantied by blend-union operation between three parts
of this model using the HyperFun command hfBlendUni. The blending parame-
ters a1 = a2 = a3 = 0.2 are used for both gluing parts I, II and parts II and III,
respectively.

Fig. 13. Stage3 human embryo brain. Left: 3D tubular skeleton, right: entire brain
model, defined by function representation.

6.2 Shape of the Digestive System

We represent the smooth shape of the digestive system in a compact way by
piecewise linear skeleton and locally defined convolution cylinders along each
linear segment of a skeleton. Thus, the resulting smooth tubular surface is rep-
resented by a real function as the blend union operation between many convolu-
tion cylinders. The shape of a convolution surface can be varied in several ways:
by varying the skeleton, by varying the thickness of convolution cylinders with
parameter s from Eq. 9, and by the iso-potential threshold value T :

fi(X) =
∫

Vi

1
(1 + s2r2(v))2

dv − T. (9)

For example, the small and large intestines monotonically increase their thickness
which can be modeled with the monotonically decreasing parameter s as seen
for the six developmental stages of intestine in Table 2.

Thickness. As was already mentioned, the increasing thickness of convolution
cylinders distributed along the skeleton segments is given by monotonically de-
creasing the width parameter s in time as shown in Table 2. We will transform
the solution of Eq. 10, ŝ, that monotonically increases from 0.01 to 0.16 over the
time interval [28, 120] into a monotonically decreasing function s by Eq. 11,
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Table 2. Convolution parameters for thickness of small and large intestine

Intestine
Embryo age (day) Small Large

s T s T
28 0.45 0.2 0.69 0.25
49 0.42 0.2 0.67 0.25
58 0.40 0.2 0.63 0.25
70 0.35 0.2 0.60 0.25
83 0.32 0.2 0.57 0.25

113 0.29 0.2 0.54 0.25

where smax = 0.7:

∂ŝ(t)
∂t

= g0.16,0.003(ŝ), ŝ(28) = 0.01 (10)

s(t) = smax − ŝ(t). (11)

Function s(t) is the growth function controlling the thickness of large intestine
with a good approximation of data from Table 1. The graph of the growth
function over the time is shown on right of Fig. 14.
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Fig. 14. Graphs of growth functions. Left) Total length of large intestine in time.
Right) Change of width parameter s in time, see Eq. 9.

7 Results

Few frames from animation of Organ growth show the embryo stomach and brain
described by embryo age and the real size scale bar, see Figures 15, 16.

Shown in Fig. 17 are several frames from a generated animation simulat-
ing digestive growth based on the proposed L-system using the above growth
functions. The environment forces and self collision were handled by the spring
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Fig. 15. A single frame from the human embryo stomach animation

Fig. 16. A single frame from the human embryo brain animation
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representation of results obtained from L-system. The shape of the digestive
system shown in this figure undergoes global bending transformation and de-
formations resulting from gravity, animator intervention (looping process), and
collision. Some of the intermediate shapes in Fig. 17 have disjoined elements due
to aliasing in the implicit polygonizer that has difficulties to find a mesh for long
thin structures.

Fig. 17. Development of a human embryo digestive system with proposed method
taking into account the skeleton dynamics and growth functions in algebraic L-system.
Function representation is used to define a smooth shape. Indicated stages from left to
right represent 28, 34, 40, 49, 52, 58, 64, 70, 76, 79, 83, 94, 101, 107, 110, and 113 days
of animation sequence.

8 Conclusions

We have presented a method for simulation of the growth of human embryo
digestive system. The method uses the shape calculated based on F-rep using iso-
surfaces generated by skeleton segments, which provides a smooth and compact
representation of the surface usable for complex animations. We proposed a
method in which the organ growth and global bends are separate processes. The
differential growth functions are introduced for an algebraic L-system which
efficiently control the elongation of skeleton segments.

We succeeded to model structure of living cells, virtual human embryo organs,
namely brain, stomach and digestive system using convolution surfaces and func-
tional representation. The growth animation of a stomach was generated for all 9
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months of development while the brain growth animation was generated for first
4 months of embryo development. The advantage of skeleton based approach is
that it avoids the the topology artifacts that can occur when using the nonlinear
interpolation between two defining functions of F-rep models. Variable speed
of growth and shape thickness is successfully modelled by convolution plus or
blending union between model parts.

We have proposed the skeletons consisting of triangular patches which gives
us the opportunity to define the flat shapes like pillow, refer to the brain model.
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Abstract. Advances in digital design and fabrication technologies are leading 
toward single fabrication systems capable of producing almost any complete 
functional object. We are proposing a new paradigm for manufacturing, which 
we call Universal Desktop Fabrication (UDF), and a framework for its devel-
opment. UDF will be a coherent system of volumetric digital design software 
able to handle infinite complexity at any spatial resolution and compact, auto-
mated, multi-material digital fabrication hardware. This system aims to be in-
expensive, simple, safe and intuitive to operate, open to user modification and 
experimentation, and capable of rapidly manufacturing almost any arbitrary, 
complete, high-quality, functional object. Through the broad accessibility and 
generality of digital technology, UDF will enable vastly more individuals to be-
come innovators of technology, and will catalyze a shift from specialized mass 
production and global transportation of products to personal customization and 
point-of-use manufacturing. Likewise, the inherent accuracy and speed of digi-
tal computation will allow processes that significantly surpass the practical 
complexity of the current design and manufacturing systems. This transforma-
tion of manufacturing will allow for entirely new classes of human-made, peer-
produced, micro-engineered objects, resulting in more dynamic and natural in-
teractions with the world. We describe and illustrate our current results in UDF 
hardware and software, and describe future development directions. 

1   Introduction 

Humans and animals have evolved and live in an enormously complex dynamic sys-
tem, the natural world. Lacking the vast computational resources necessary to explic-
itly represent and manipulate the complexity of the world, the animal and human 
mind developed the ability to represent objects implicitly, as simple, clearly deline-
ated boundaries of space [1, 2]. It is hardly a surprise then, that traditional manufac-
turing and design processes assume that any given object or an independent part of a 
larger object is made from a single, homogeneous material. Raw materials extracted 
from nature are separated and purified so that they can easily be utilized in this 
framework. The lack of explicit computation and thus the homogenization of nature 
results in 'man-made' objects that clearly stand apart from nature.  
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Over the past two decades, advances in digital computational power and the devel-
opment of inexpensive and interactive three-dimensional modeling and visualization 
systems have extended the human capacity to conceive of and represent increasingly 
complex and optimal—more “natural”—objects. This has lead to the design of objects 
and software tools that do not respect the constraints of traditional manufacturing. At 
the same time, it has also instigated a family of technologies known as Rapid Proto-
typing (RP) or Solid Freeform Fabrication (SFF), better equipped to handle these 
new, “natural”, digital objects. SFF builds up complex three-dimensional objects di-
rectly from digital design data by depositing or solidifying material, layer by layer, 
under computer control. For the designer, the ability to simply “print-out” extremely 
complex and otherwise impossible to fabricate designs has driven the demand for 
RP/SFF technologies to produce not merely prototypes, but parts accurate and durable 
enough to obviate traditional manufacturing [3]. This general category of technology 
is referred to as Digital Fabrication (DF) [4]. The current state-of-the-art commercial 
DF systems allow net- or near net-shape mechanical parts with very complex geome-
try to be produced in a variety of engineering materials, ranging from thermoplastics 
to ceramics to high-performance metal alloys. Researchers are extending the range of 
what can be produced with DF processes to include sensors, actuators, electronics, 
power sources, and engineered living tissues, using ever more compact and automated 
systems that deposit multiple types of materials during the course of building a single 
object. As explicit design and manufacturing complexity and quality approaches that 
of the nature, it will be possible to fabricate objects previously considered too difficult 
or even impossible. Human-made objects will not stand apart but increasingly emu-
late and seamlessly integrate with the natural world.   

This research and technology is sparking a transformation away from the limits of 
traditional manufacturing and centralized production [5] toward “Universal Desktop 
Fabrication” (UDF) —compact DF systems which can produce essentially any com-
plete, finished, and functional object; not merely mechanical parts, but everything 
from birthday cakes, to complete cell phones (with batteries), to a human heart. Imag-
ine an Internet of physical things, a 3D fax machine or the “replicator” from the sci-
ence fiction TV series, Star Trek (Fig. 1). If such technology can be made accessible 
to individuals, it has the potential to revolutionize the limited ways humans construct 
objects, manipulate matter, and interact with the world. Individuals will not have to 
buy a generic, mass produced product shipped around the world to their local super-
store. Instead they may choose to download an object, customize the design to fit their 
needs and 'print'. UDF lowers the financial cost and expertise required for invention, 
essentially placing an entire R&D laboratory on an individual’s desktop [6]. This will 
empower countless individuals to become creators of technology rather than passive 
consumers.  

Unfortunately, significant barriers exist to the realization of UDF.  The majority of 
intellectual property in the DF field is held by a few corporations, restricting competi-
tion and the identification of new applications, slowing innovation, and ensuring sys-
tems remain costly and complex. Commercially available systems are proprietary, and 
each system is optimized for one or two typically proprietary materials. Systems are 
not capable of varying the material composition freely through the part. Additionally, 
traditional human approaches to representing objects combined with intangible digital 
processes, having no physical limitations, have resulted in the development of popular  
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Fig. 1. Television's imaginary Star Trek Replicator 

design software that is incapable of accurately representing real objects and thus an 
unsuitable platform for UDF, often proving problematic even for traditional manufac-
turing. DF and UDF hardware systems under development in research laboratories 
will soon be capable of producing functional objects with such extraordinary com-
plexity of shape and material composition that existing digital design and engineering 
tools will no longer be able to represent them.   

In order to surmount these barriers to the realization and dissemination of UDF, we 
are proposing an inexpensive and open research platform for its development, based 
on combining and extending several existing digital design and fabrication technolo-
gies and research projects. Inexpensive, desktop DF has demonstrably broad appeal 
[7]; therefore we expect that a UDF platform will readily attract intellectual capital 
from the flourishing online software and hardware development communities, vastly 
accelerating the rate of advancement and public adoption of the technology. 
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2   Characterization of UDF 

In order to facilitate meaningful discussion, it is necessary to clearly define UDF. An 
important part of defining UDF is to understand the relationship between traditional 
manufacturing and UDF. The types and complexity of objects that these approaches 
can produce are quite different. In addition, it is necessary to identify and define the 
features and objectives required by UDF. 

2.1   Simple Taxonomy of Representational Complexity  

Understanding UDF means first understanding the ways in which humans have repre-
sented (and manufactured) objects historically and how with powerful computation 
these representations can change. To clarify for further discussion, a taxonomy of 
representational complexity should be defined. Using composition, construction and 
topology, three very general representational categories are suggested for describing 
real objects: simple, complex and heterogeneous (Fig. 2). As any real object viewed 
close enough can be considered extremely complex in construction, this taxonomy 
can also be mapped as various levels of granularity, from gross to highly detailed.  

Simple representations have an explicit separation between different materials, and 
geometry tends to be smooth and continuous. Examples of objects that can be easily 
described this way might include such things as an egg or a swimming pool.  

Complex representations are more natural in composition; various materials are dis-
tributed or intersect one another non-uniformly. Surfaces can be rough and detailed, 
often having deep valleys and peaks, as can be observed in the leaves of a tree or a 
geological body.  

Heterogeneous representations exhibit a gradual change in material composition and 
associated properties throughout. Surfaces boundaries may be defused. All natural 
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Fig. 2. The top set of images graphically illustrate the differences between the various representa-
tions: a) simple b) complex c) heterogeneous. The set of images below are examples of real ob-
jects that can be represented by these categories (however all real objects are truly heterogeneous).  
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and/or real objects regardless how simple they may appear are truly heterogeneous. It 
is not possible to represent many objects, such as a real human heart or diffuse nebu-
lae, any other way.  
 

Traditionally humans have defined objects using primarily simple representations and 
most, if not all, current industrial software modeling packages still represent objects 
in this way. Likewise, expensive RP and DF systems that exist primarily use a single 
material and are not comparable to the fantasy of a Star Trek replicator. These tech-
nologies are far from achieving a level of complexity close to that of the natural. Cur-
rent DF software and hardware systems act like digitally controlled replacements for 
traditional manufacturing and while that alone has advantages, to fully capitalize on 
inherent potential in DF and the realization of UDF, robust, accurate and realistic de-
scriptions of objects are necessary.  

2.2   UDF Features 

Academic and corporate research efforts are underway to develop, primarily single 
material, desktop DF systems [8, 9], invariably laying the foundation for UDF sys-
tems. UDF should not be considered as simply any '3D printer', but an inexpensive, 
personal system that, using a variety of materials, can fabricate a broad range of ex-
tremely complex and functional objects (previously thought unfeasible). It is impor-
tant to identify what minimal properties such a UDF system would possess in order to 
be considered a viable public platform. These features should be understood as not 
just purely technical in nature but also reflecting the social and market aspects of such 
a platform. The 'Universal' nomenclature in the term signifies that it is readily avail-
able, easy to use, open to modification, and most importantly can fabricate a broad 
range of objects. The 'Desktop' aspects include low cost, small size and extremely low 
or zero toxicity and waste. A more detailed short list of features is presented here. 
This list is not necessarily meant to be exclusive or complete and mostly ignores the 
feasibility of the listed features. Instead, it serves both as a list of desirable objectives 
and as a reference point for further discussion.  
 
Easy. Systems must be relatively simple to operate and use. 
 

Free/Open. Some of the most successful, long term consumer desktop technologies 
today are built on free and open standards and collaboration. It has also shown to in-
crease the rate of technological development [5, 6]. 
 

Detailed. The model and fabrication process must be fine enough that objects can 
obtain qualities and attributes of natural and real objects. 
 

Heterogeneous. The system must be able to represent heterogeneous objects with a 
broad range of materials and fabricate new materials and composites.  
 

Self-Assembly. Digital and/or self-assembly methods, including physical error-
correction, will enable the fabrication of objects with tolerances superior to those of 
the fabrication machine itself, and the production of multiple copies of a given object 
with near-perfect fidelity. 
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Inexpensive. The complete system price, power consumption and cost of materials 
must be roughly similar to other desktop computing technology. 
 
Fast. The fabrication process must be cost competitive with traditional manufacturing 
approaches when the design freedom provided by UDF is accounted for. 
 

Compact. Systems must be small and lightweight (perhaps at some point it may not 
require a separate machine for fabrication).  
 

Safe. Hazardous and/or toxic processes are unacceptable for low cost desktop systems 
as it drives up cost and more importantly can harm users and environment. 
 

Disassemble. Systems should be able to recycle locally by disassembling objects 
back into raw materials. 

3   Related Works 

Most available DF systems, if not all, are oriented toward tightly integrating with ex-
isting and limited commercial Computer Aided Design, Engineering or Manufactur-
ing (CAD/E/M) frameworks and representations. These commercial systems are not 
designed to model heterogeneous objects. This practical bias places focus on the fab-
rication of homogeneous and simple objects, ignoring complex and heterogeneous 
ones. Existing systems usually do not attempt to rethink DF as a whole, instead they 
rely on traditional CAD systems and independently solve hardware or software issues. 
The creation of a complete UDF system requires approaching the problems of DF 
anew and thus it becomes necessary to develop both the hardware and software com-
ponents in concert. Most existing systems do not take such a holistic approach and are 
not interested in the same objectives as UDF. The following sections discuss various 
systems and research projects oriented towards inexpensive and/or heterogeneous 
fabrication.  

3.1   Hardware 

A common method to currently manufacture blended multi-material objects is by us-
ing complex injection molding processes whereby one material is injected into a 
mold, followed by another material. Specifically calculated and computer controlled 
temperatures and amounts yield objects with an expected smooth transition of mate-
rial [10]. Although this system produces heterogeneous objects in some sense, there is 
a lack of precise control over the internal composition and complexity of the objects. 
In addition, injection molding requires non-reconfigurable tooling, typically very ex-
pensive and time consuming. This favors fixed manufacturing and mass production, 
making it unsuitable as a DF technology. 

Most DF hardware systems use a Solid Freeform Fabrication (SFF) process [11], 
by slicing a shape into cross sectional layers and adding a layer of material at a time 
to build up an object. There are a wide range of SFF methods and techniques. One 
method is building each layer with a target material and building support structures 
for overhanging features in the same material or another, explicitly sacrificial  
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material. After fabrication, the support material is removed by another process.  These 
“fabricated support” SFF methods include Fused Deposition Modeling (FDM), 
stereolithography, and Laser Engineered Net Shaping (LENS). Another method in-
volves applying a layer of typically powder or laminar target material to the entire 
working surface, and selectively binding or fusing the material within the cross-
section of the desired part to prior layers.  Rather than building a separate support 
structure, this method utilizes the unbound/unfused material for supporting overhang-
ing and unattached features. Such methods include 3D printing, laminated object 
manufacturing, and selective laser- or electron beam-sintering. Other methods include 
hybrid processes such as shape deposition manufacturing [12] that uses several staged 
processes, including more traditional CAM processes like milling, to produce high 
tolerance parts. Most of these methods, due to the extensive tuning of the fabrication 
process for a specific material and the restrictions of existing CAD systems are lim-
ited to the fabrication of homogeneous objects. There are a few notable exceptions. 

Although the Z Corp Spectrum Z510 is not actually a multi-material fabricator, it 
has the capacity to print any color at any point in the object. This capability is primar-
ily used to print the surface of the object with color in the form of a 2D image texture 
map. However this is very useful as a way to physically visualize various properties 
of an object, including material, by mapping various properties to colors. The Z510 
does not directly produce functional objects, as the bound powder parts are quite frag-
ile. Infiltration with epoxy or cyanoacrylate resins can render them robust enough for 
light mechanical use. 

Most of the systems that produce heterogeneous functional objects are somewhat 
experimental, extremely specialized and expensive, such as the Optomec's LENS 850-
R. This fabricator is capable of producing metal objects from a variety of alloys, as 
well as fabricating composites and functional gradient materials. It has been designed 
as an aerospace and military solution for the limited production of new parts and rapid 
repair of specialized parts.  

Apart from such expensive and exotic systems several commercial companies are 
in the process of producing SFF systems targeted at small businesses and individual 
users. Desktop Factory has developed a '3D printer' which is currently the lowest 
priced commercially available system [8]. However, it prints only single material ob-
jects with fairly low resolution from a composite plastic powder.  

Other more inexpensive and dynamic systems are under development. Recent  
research has resulted in a few desktop SFF systems using a “do it yourself” (DIY) 
approach. These systems are extremely inexpensive (supplanting money by time in-
vested) and flexible. One such system of notoriety is the RepRap Project [9]. This 
project's stated goal is the creation of a self-replicating machine. However, the project 
has produced an inexpensive FDM fabricator capable of printing usable plastic parts. 
Due to the DIY/free-source nature of the project, the hardware is also easily extensi-
ble and all the plans, specifications and modifications are placed on the Internet and 
freely downloadable. It is possible for the hardware to be adapted to use various fabri-
cation processes and materials. This project and fabricator have specifications  
compatible with that of UDF. 
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3.2   Software 

As of yet, no complete commercial 3D CAD/E/M package for heterogeneous objects 
exist. Instead designers and engineers are limited to creating homogeneous parts and 
multi-material assemblies. However, over the last decade, volumetric and heteroge-
neous representations of objects have received much attention in shape modeling and 
CAD/E/M research [13]. The rest of this section will discuss various systems for the 
representation of object's properties (or materials). A diverse group of solutions has 
been developed. In general these can be divided into two categories: discrete repre-
sentations and continuous representations. Additionally, several advanced representa-
tions exist. Composite representations can be identified as a collection of sub-objects 
where each separate object can be discrete or continuous.  Hybrid representations can 
use both discrete and continuous in simultaneous conjunction. Discrete models can 
produce detailed and complex property distributions, but at the cost of accuracy, prac-
tical resolution and usability. Examples of such systems include voxels and volume 
meshes. Such models include voxels and volume meshes. Continuous models are 
based on rigorous functions describing exact geometry and are much more accurate 
and compact and include control features, control points, and real functions. Several 
of these methods are worth discussion in more detail. 

Voxel based representations are well established (especially in medical visualiza-
tion) and for more than a decade have been proposed for modeling and fabrication 
[14]. These representations are good for complex objects and useful for representing 
volumetrically scanned data from magnetic resonance imaging or other such technol-
ogy. It is also easy to implement hardware optimization and parallelization for voxels. 
However it is not easy to edit the large voxel sets which are required to reduce alias-
ing and make smooth or high quality objects.  

Unlike voxels, control point based heterogeneous modeling is continuous, utilizing 
Bezier, B-spline volumes and tri-variate NURBS [15, 16, 17]. These representations 
are fairly compact, exact and can represent complex and heterogeneous material dis-
tributions.  However the representation is only applied to property distribution. The 
geometry model usually relies on the standard CAD/E/M representation, Boundary 
Representation (B-Rep) [18, 19], and thus requires two completely separate processes 
when modeling geometry and composition. In addition, parameterization of the object 
as a whole becomes problematic, limiting the complexity and abstraction of designed 
objects and reducing usability. 

Real function based properties can also be used to represent the distribution of ma-
terials inside B-Rep geometry [20, 21]. When applied in this way, real functions, have 
the same advantages and drawbacks as control point based methods, except more de-
tailed and constructive modeling of materials and properties is possible. However, 
real function based properties can also be applied to real function based geometry [22, 
23, 24]. In this case modeling and property assignment can happen simultaneously in 
a singular uniform environment. This advantage has a drawback. Compatibility with 
standard CAD/E/M becomes a problem, as it can be very difficult or impossible to 
import certain kinds of B-Rep based data into a real function model. 
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4   Implementation Problems 

Practical research aimed at developing complete usable UDF systems is in its infancy. 
As such, many known (and unknown) problems face UDF technologies. Some gen-
eral problems are presented in the subsequent section. Many of these problems are not 
discussed in detail, but are simply presented as a basis to understand the complex 
technical challenges involved. 
 
Accessibility. Current fabrication systems are physically large and heavy and often 
require special facilities. Cost and operation of complete systems still remains pro-
hibitive for individuals or even small research teams. Specially manufactured and 
expensive materials, often only available from the vendor, are required for operation. 
The machine maintenance and operation requires an expert. Despite the high cost of 
operation, many systems are slow, some take days to complete a single object.  
 
Accuracy. Most of the current DF systems have poor resolution and aliasing can be 
physically observed and felt by touch. Practically, these systems operate at a scale 
somewhere not far below the millimeter. In order to produce truly heterogeneous ob-
jects with smooth details and advanced functionality, system resolutions must achieve 
micrometer scale. New problems present themselves at this scale, such as accurate 
system control, speed of fabrication, maximum size of objects, and repeatability of 
fabrication and data representation. Many of these problems have already been solved 
by the desktop printing industry. However, overall this still remains a complex suite 
of machine design and control, and materials science problems. 
 
Complexity. It is important to note that while some progress has been made in devel-
oping inexpensive desktop fabricators (see section 3), complex or heterogeneous fab-
rication still remains elusive on low cost machines. Even using very expensive 
frameworks it is problematic and an active area of intense research. Most systems use 
a single material and operate using mesh or control point data, often limiting the abil-
ity of hardware in the complexity and/or accuracy of the objects they can build. This 
is because machines are painstakingly optimized for each material, different materials 
often have conflicting processing requirements, and because traditional 3D CAD 
software is difficult to use, expensive and fundamentally incapable of modeling real 
objects (i.e. heterogeneous objects).  
 
Health/Environment. Many of the first RP processes developed used hazardous 
processes and/or materials, including carcinogenic resins, and high-powered lasers. 
There has been some progress recently, however hazards still remain an issue. In ad-
dition many of these systems, if used by millions of people, would have a profound 
environmental impact. Mass production facilities are often compelled and sometimes 
financially motivated to collect and recycle by-products of manufacturing, and econ-
omy of scale can make this relatively cost effective. It is unclear whether waste man-
agement can be cost-effectively rescaled for personal fabrication. In the Age of In-
formation and the 'paperless society', humans are not using less paper, they are using 
even more as it becomes a temporary medium to exchange information [25]. Unlike 
the paper printing process, the objective of UDF is not to exchange information 
(which at some point arguably could be replaced 100% by digital processes) but to 
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fabricate material objects effortlessly. Also, unlike the paper printing processes, using 
the current processes available for heterogeneous fabrication, there is still no clear 
answer on how to recycle the resulting objects or better yet disassemble them back 
into raw materials. Improvements to heterogeneous fabrication allow ever more inti-
mately combined materials, exacerbating the disassembly/recycling problem. 
 
Standardization. In addition to the strictly technical issues identified with the current 
research, there are also issues surrounding standardization and development. Little 
standardization or global collaboration exists at present and what does exist is poor 
and outdated (for example the STL file format). Even though the idea of assembling 
objects digitally is a very popular topic, there does not seem to be enough open devel-
opment or collaboration. As it seems to be currently true for many fields in IT, much 
of the work done over the last decade on DF has been by corporations and now even 
academic institutions that are closely guarding and protecting their inventions as se-
crets, [26] stifling technology wide innovation. 

A main focus of the current research is solving those issues related to accessibility 
and complexity. In the next sections more details are provided on these two topics. 

4.1   Problem of Accessibility 

Commercial DF technology is still focused on producing passive mechanical parts in 
a single material, and the emphasis of commercial R&D has been on improving the 
quality, resolution, and surface finish of parts, and on broadening the range of usable 
materials. Growth in the market for and capability of commercial DF technology has 
been disappointingly slow – commercial systems have been available for more than 
two decades, yet worldwide annual sales of systems are still measured only in thou-
sands. At present SFF systems remain very expensive and complex, focused on  
production of single material mechanical parts, and used primarily by corporate engi-
neers, designers, and architects for prototyping and visualization and a limited range 
of end use parts. These factors are linked in a vicious cycle which slows the develop-
ment of the technology: Niche applications imply a small demand for machines, re-
stricting commercial R&D and adoption of the new capabilities demonstrated in the 
laboratory, while small demand for machines keeps the machines costly and complex, 
limiting them to niche applications. 

4.2   Problem of Complexity 

Currently most, if not all, major industrial grade CAD/E/M software represents ob-
jects as a boundary or division of space, or B-Rep. In practice this means a hierarchi-
cal tree of divisions of 2D surfaces in 3D space, that for 'solid' objects (which are nec-
essary for fabrication), should define a closed object. B-Rep models fail to define the 
internal composition of objects. In other words, traditional 3D models are represented 
as empty spaces inside a zero thickness 'shell'. Fundamentally this means it is not pos-
sible to exactly represent natural, real objects in the world. However, as long as such 
B-Rep models are truly closed, have correct normals and with additional modeling 
data (often added in a separate process), they can be used to fabricate some types of 
multi-material objects. The process is computationally and memory intensive; creates 
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large data sets and can be problematic (depending on the objective). This becomes 
more evident when fabricating complex or heterogeneous objects. The utilization of 
B-Rep geometry for multi-material fabrication is most applicable for modeling simple 
objects with clear divisions between materials where each material in an object is 
modeled as a separate part. 

If a given system or technology is provided poor input, then often the capabilities 
and output is also poor or at least problematic (on rare occasions input to a system can 
be 'improved'). Thus, if a computer can not represent real objects in a universal and 
functional manner, then it will be problematic to develop a general method for digi-
tally fabricating arbitrary objects and an average technology user will not be able to 
practically utilize DF systems.  Even with dynamic manufacturing methods like local 
composition control and SFF, currently available software does not operate in truly 
heterogeneous manner. These software systems, in part due to human thinking, sim-
plify reality as sets with clear boundaries. In contrast to such simplification, natural 
and real objects have no such boundaries; they are complex and heterogeneous in con-
struction. For example, humans generally describe a watermelon as a green skin with 
a red inside (Fig. 3a), when in fact a watermelon's 'skin' is thick, irregular, mostly 
white and it is unclear where it ends fading from green to white to pink, and where 
finally the fibrous red fruit begins (Fig. 3b).  
 
 

 
 
Fig. 3. Watermelon informatics: (a) traditional simple CAD model, (b) real object with hetero-
geneous internal material distribution 

For a more practical explanation, imagine an architect using traditional CAD soft-
ware and modeling a wooden house in 3D. It will finally be represented as 2D poly-
gons set next to each other in 3D space, not as real objects and materials with connec-
tions. The small individual cuts of wood, the grain of the wood and the existence of 
nails or glue go unrepresented. In fact, far from modeling the material properties of a 
building, in practice most architects create models in 3D as a separate process (from 
the creation of building plans in 2D) for visualization of design only. The simplifica-
tion of objects is not the fault of software but an accepted and necessary process of 
human thinking and design. Part of the traditional design and manufacturing proc-
esses has been to fill in the missing details or errors (often not well documented) in 
design as objects are built for the first time. There has always been a gap between 
what is designed and what is manufactured. However, due to modern information and 
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computation technology, this needs not be the case and results of this approach are 
already visible in design. Moreover, as the computational ability to explicitly define 
exact objects increases, whole new categories of human-made objects and design pre-
viously unconsidered or improbable become possible. Explicitly designing objects 
that can self-repair or flora capable of generating electrical power, enter the realm of 
possibility. A major barrier preventing the micro-fabrication of such objects is the 
lack of computationally uniform and robust representations and frameworks that rep-
resent both property (including material) distribution and geometry simultaneously. A 
designer should be able to define the geometric boundary of an object as unclear or 
defused and indicate at any given point in an object, a variety or properties including 
but not limited to material composition. Simple and sharp interfaces are replaced by 
complex and smooth variations. In order for this to be practical it must also be done in 
a compact and accessible method. This is one of the most difficult challenges facing 
the fabrication of complex or heterogeneous objects.   

Recently to compensate for the limitations of B-Rep, researchers have been look-
ing at novel ways to combine B-Rep geometric data with additional data to describe 
material distributions (see section 3.2). Thus far extending or patching formats that 
fundamentally are incapable of encapsulating the nature of real objects has serious 
limitations. For example, even accounting for the fact that most fabricators are de-
signed to print in one material, software prevents them from printing extremely geo-
metrically complex and large objects at high resolutions, like an internally accurate 
skull, including the porous features inside the bones and teeth. Moreover, how would 
a user be able to reasonably create or modify such a data set using traditional soft-
ware? To fully take advantage of digital fabrication technologies, future representa-
tions should be able to operate on both the surface geometry and internal composition 
in a uniform, compact, and consistent manner.  

5   Approach 

As stated previously, given the enormity of the task to develop a fully functional UDF 
system, it is not possible at this time to seek solutions to all the problems identified. 
For example assembling objects at a nanometer scale, which is required to make 
many desirable objects such as microelectronics, has not been broached by this re-
search. Indeed many of the issues surrounding these problems remain unclear and 
additional problems are expected to be defined. Instead the primary objective of the 
research presented here is to work on the most accessible problems, develop solutions 
to these and most importantly to develop an inexpensive and functional open platform 
for collaboration and experimentation. It should be a generalized fabrication system 
using inexpensive, available, open technologies that exist today, resulting in a low 
cost, complete, usable, heterogeneous SFF system.   

The open platform should not be limited to just companies, institutes and universi-
ties, but instead to any person or organization that has a small budget and access to 
the Internet. As the Internet has repeatedly demonstrated, having many diverse groups 
and people developing a technology is an extremely successful development model. 
To further rapid and diverse collaboration, Free and Open Source Systems (FOSS) 
methodology and licenses have been adopted. 
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Continuing in this line of thinking, the hardware system should be easily custom-
izable and use an unlimited variety of inexpensive and easily attainable raw materials 
for printing. The design of the system should be simplified so that the construction of 
the hardware platform uses various inexpensive parts, is available online, and can be 
assembled together in a few days. In addition, users should be able to use a wide vari-
ety of easily attainable consumer materials. 

Many methods now exist to fabricate objects digitally such as FDM, ink-jet deposi-
tion and photo static methods. The experimental UDF system should not be limited to 
a single DF method, instead it should allow a variety of tools and methods to be de-
veloped and used, perhaps even several different methods used to make a single ob-
ject. The system should be able to dynamically mix or assemble several materials 
and/or processes together for a given resolution at any arbitrary location in the object.  

To understand and finely control a heterogeneous object's design, users should be 
able to edit both the geometry and composition of heterogeneous objects, by a similar 
or identical method at the same moment. It should not require separate modeling 
stages for geometry and then composition, making it impossible for a user to visualize 
the composition of an object while modeling the geometry or forcing the user when 
making a modification to step though a complex processes every time. Likewise for 
fabrication, the system should have a framework able to identify geometric features 
and material composition in a uniform method. In addition the resolution and com-
plexity of modeling and fabricating with the system should only be limited by the 
current computational power available. 

Thus a simple, compact and uniform system that simultaneously represents both in-
ternal composition and object geometry as a so-called “implicit” model with  real 
continuous functions is required. Function-based modeling is a necessary core tech-
nology for UDF (and perhaps the increasingly digital future), that is leading towards 
interactive modeling of complex and heterogeneous objects without requiring an ex-
plicit specification of the internal configuration. This will provide the means to de-
velop and operate nanometer scale engineering, simulation, design and fabrication 
systems. The proposed system will use direct fabrication from an object's compact 
function representation and not from intermediate and degrading file formats like 
STL. These formats not only degrade the topology but more importantly have no way 
to represent real heterogeneous objects. Although it is theoretically possible for sev-
eral STL models to be combined to represent a complex multi-material object, the 
data size would make storage and computation prohibitive. A functional UDF system 
must adopt a procedural, function based approach to modeling and fabrication. How-
ever, it should also be able to adequately accept discrete legacy data in a uniform way. 

Several existing research efforts have already laid the foundation for UDF. Two 
projects, Fab@Home (FaH) and HyperFun (HF), as in “hyper-dimensional functions”, 
are both advanced research efforts in their respective areas. It is also interesting to 
note, but perhaps not surprising that they are both FOSS, utilizing the concepts of 
peer production to simultaneously speed up production cycles and democratize inno-
vation. The HF project is a good choice as an underling representational foundation 
for UDF development, able to digitally describe, create and modify any object or en-
vironment. The HF project lacks a DF hardware component, however. FaH is a good 
choice for a DF hardware platform, as it is simple and inexpensive, yet capable of 
multiple-material deposition and easily extensible. FaH includes CAM software, but 
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lacks integrated heterogeneous digital design and fabrication tools. Better than either 
of these projects alone would be a single system integrating design, engineering, and 
manufacturing. 

6   Previous Work 

The FaH project and team has developed a usable low cost DF robot, and a uniform 
volumetric modeling system has been developed by the HF project. Both of these 
projects have years of development behind them and provide a developmental founda-
tion for further work. 

6.1   Fab@Home 

The FaH Project has been inspired by the FOSS approach employed by the RepRap 
Project. The aim of FaH is to put DF technology into the hands of the maximum 
number of curious, inventive, and entrepreneurial individuals, and to help them to 
drive the expansion and advancement of the technology. To achieve this, we have 
developed an open source, low-cost, personal DF system, which we call the “FaH 
Model 1” (Fig. 4a), and a user-editable “wiki” website to publish the system designs 
and software, and to foster a collaborative user community. The parts for the Model 1 
kit has a rough cost of $2300 (USD). It includes a free, open-source CAM application 
which controls the hardware, and processes STL files into manufacturing plans. Al-
most any room-temperature liquid or paste can be used as the deposition material. 
Only basic hobbyist tools and skills are required to assembly and use the Model 1 and 
its software. We have endeavored to make obtaining, assembling, using, and experi-
menting with the Model 1 as simple and intuitive as possible; the website provides 
step-by-step ordering, assembly (Fig. 4b) and operational instructions, and an interac-
tive three-dimensional, WYSIWYG, CAM application (Fig. 5).  

This custom CAM application which imports individual or assemblies of tessel-
lated geometry (polyhedra) in the STL file format, generates hardware executable 
manufacturing plans, and controls their execution on the fabrication hardware.  The 
system operator uses a Graphical User Interface (GUI) to specify with which material 
and tool combination each polyhedron should be fabricated. The tool path planning 
consists of slicing each polyhedron according to the road thickness associated with its 
particular material/tool combination, offsetting resulting boundary polygons by a half 
of the material deposit width for the material/tool, and filling enclosed areas with 
raster fill (hatch) paths. Slices (containing paths) are then sorted by their height and 
executed, with the software prompting the operator to change the material and/or tool 
as required. The hardware currently allows only one tool/material combination to be 
mounted at a time, and changes are manually executed, so although the use of multi-
ple materials is possible, time and labor become a significant factor for detailed ob-
jects, such as batteries. To reduce this cost, we have developed a technology, dubbed 
Backfill Deposition.  In practice, as geometry data describing component parts of a 
device such as a battery are imported into the fabrication system software, the opera-
tor may use the GUI to assign a sequential fabrication priority to each of the parts. 
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Fig. 4. The FaH Model 1 design. (a) 3D CAD model of an assembled Model 1; (b) An example 
of assembly instructions available via the project website (http:// www.fabathome.org). 
 
 

 

 
Fig. 5. The FaH CAM application displaying a model ready for fabrication, dialog boxes for 
positioning and real-time status information 
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The SFF system will fabricate higher priority parts of an assembly to their full height 
prior to fabricating lower priority parts, in contrast to strict layered fabrication. This 
can reduce the number of tool changes in some cases from one per layer, down to one 
per STL file (or part). The priority will be obeyed by the system except where doing 
so would violate the relationship of one part supporting another. Additionally, this 
option facilitates fabrication of objects which contain or are made from liquid materi-
als. It allows the fabrication system to construct a container before filling it.  For ex-
ample, the case of a battery can be given a higher priority than the materials to be 
deposited into it, and it will be completely fabricated to its full height before the 
deposition of the other materials begins. 

The Model 1 machines have been used to make simple functional objects (Fig. 6). 
A user-editable “wiki” website facilitates publishing the designs and documentation. 
 
 

 
 
Fig. 6. Single material objects built with a FaH Model 1: (a) A personalized chocolate bar built 
with a modified Model 1 by Noy Schaal; (b) A mold for a model airplane propeller fabricated 
using 1-part RTV silicone rubber, and a propeller cast with epoxy from the mold; (c) a watch 
made by fabricating a silicone watchband and inserting a conventional watch body during the 
process; (d) a replica of a model car tire fabricated of black silicone rubber 

C 
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Discussion forums are available using the free Google Groups service, and the source 
code for the project is shared via SourceForge, a free service which facilitates FOSS 
development. Through these media, participants in FaH have begun to exchange their 
ideas for applications and their improvements to the hardware and software with us 
and each other.  

As evidence of the broad appeal of DF, and the potential impact of making DF 
more publicly accessible, in the first five months after October 2006 (when the 
website was first made publicly accessible), the project website had more than 3.5 
million requests for pages from more than 150,000 distinct hosts in more than 150 
countries. Users have begun to make contributions to the FaH wiki, the Google 
Group, and the SourceForge project in the form of new deposition process ideas, 
bug reports, questions, feature requests, alternative vendors, group purchasing ar-
rangements, and more.   

6.2   HyperFun 

At the beginning of the personal computer revolution in the early 1980s there was a 
need to have a standard, generalized language for digital and desktop printing; the 
same need exists for DF today. The PostScript language was invented to answer the 
needs of desktop printing. PostScript is so noteworthy because it goes beyond typical 
printer control formats and is a complete self-contained programming language, allow-
ing it to implement on-the-fly rasterization using interpreters (PostScript Raster Image 
Processors), making it extremely compact and device-independent. Like PostScript, 
HF is a completely self-contained, compact, and device-independent programming 
language for representing and constructing real objects. This feature as well as others 
makes HF well suited to become a “3D PostScript” for DF technologies. 

In addition to being a programming language HF is a robust software framework, 
used to create, visualize, and fabricate volumetric 3D models. The platform includes 
several on-line, Web based rapid interfaces for accessible, collaborative and flexible 
modeling (Fig. 7). Unlike other modeling packages, it can easily model heterogene-
ous objects in infinite detail. HF is able to represent imaginary objects or capture real 
existing objects with all the properties and details found in reality and nature. Making 
this possible, HF is built using a new approach to computing with geometry called the 
Function Representation (FRep) (see other papers of this volume for more details). In 
contrast to other existing geometric models, FRep provides a uniform method to 
model both surface geometry and internal composition simultaneously. It is also a 
compact and precise framework that can represent objects with unlimited complexity 
and properties.  

Formally a HyperFun object is defined by a vector-function, where each compo-
nent is a real continuous function of point coordinates. The first component defines 
object geometry by the inequality F(x1, x2, x3, ..., xn) ≥ 0. Other components of the 
vector-function define object attributes representing object's properties at the given 
point. The HyperFun language allows the user to define a geometric object and its 
attributes with the help of assignment statements (using auxiliary local variables and 
arrays, if necessary) as well as conditional selection and iteration statements in a  
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Fig. 7. A development environment for modeling on the Web 

single function evaluation procedure. The functional expressions are built with using  
conventional arithmetic and relational operators, standard mathematical functions, 
built-in special geometric transformations and FRep library functions for primitives, 
operations, and attributes. 

To our knowledge FRep/HyperFun is currently the only generalized framework 
and language for easily extensible, heterogeneous, volumetric modeling. In recent 
years it has gained popularity as the need for heterogeneous modeling grows. Hy-
perFun.org develops tools for FRep modeling using the HyperFun language. It is an 
international, non-profit, FOSS organization. Members of the HyperFun team make 
a freely associated group of researchers and students from different countries all 
over the world (UK, USA, Russia, France, Japan, Norway, and others). The group 
has published more than 100 papers in academic journals and conferences, and de-
velops and distributes software under a special FOSS license addressing human and 
environmental issues surrounding the dissemination of DF technology. Software 
tools supporting the HyperFun language are freely available at the HyperFun Pro-
ject Web site (www.hyperfun.org) and source code can be found at Source-
Forge.net. To date the HF language and framework has been used to model a large 
number of single material, simple objects that have been fabricated using different 
techniques, from stereolithography  to objects milled in wood (Fig. 8). In addition a 
variety of complex and heterogeneous objects have been modeled for visualization 
using HF.  
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Fig. 8. Various objects fabricated using HyperFun: a) an ant milled in wax (about 3 mm long); 
b) a chess set fabricated using stereolithography; c) a Norwegian horse and rider crest cast in 
pure silver 

As vector graphics and ideas behind PostScript made 2D desktop publishing and 
graphical interfaces possible and widespread, the ability of Frep and HyperFun to com-
pletely and compactly describe any 3D object has the potential to simplify complex 
desktop fabrication and physical interfaces, making them viable public technologies.   

7   Experimental Work 

Much of the goal of the research presented in this section is to bridge HF and FaH 
with additional development and in doing so, rapidly solve some of the issues out-
lined herein. The current objective is to directly drive and control the FaH equipment 
from HF software. Several FaH fabricators have been constructed by the HF and FaH 
researchers to enable this objective and additional development, both in Japan and 
Norway. Providing an easy means of directly driving the FaH from HF will mean that 
individuals can go from fabricating single material or simple (multi-material) objects 
to being able to fabricate complex and heterogeneous objects using the FaH.  

The current FaH CAM software uses the STL file format to import objects and it is 
internally designed to operate on mesh based boundary data. As discussed above, this 
is an inadequate representation when fabricating heterogeneous objects, however the 
STL file format can be used to print simple objects.  

7.1   Extending the Hardware for Multi-material Fabrication 

The default FaH system is designed so that, besides the three axes required for Cartesian 
control, a fourth axis controls a plunger and a syringe with a single material, depositing 
exact amounts of material at a given location. It is possible to change out syringes dur-
ing the fabrication process to create an object with more than one material; however this 
can be slow, very time consuming and is only practical for simple divisions of material. 
Recently the ability to add a fifth axis and a second syringe to the FaH has been devel-
oped (Fig. 9) along with an update to the FaH CAM software platform.  

Work is underway to incorporate inkjet material deposition capability along with a 
single or dual syringe system (Fig. 10). An Inkjet Printing (IJP) head deposits material 
by ejecting small droplets of a solution at a given spatial frequency onto a substrate, 
allowing precise placement of relatively small volumes of these materials.  

   A CB 
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Fig. 9. The FaH multi-material fabrication tool and space 

A B

 

Fig. 10. (a) Inkjet head mounted on FaH along with syringe tool; (b) SEM image of droplet 
patterns deposited by inkjet with FaH 

IJP has two main advantages over syringe deposition. First, such a tiny volume of 
material can be deposited (picoliters to nanoliters) with such high repeatability that 
material dries or solidifies very quickly, and lateral positional accuracy is determined 
almost entirely by the positioning system, rather than by material relaxation or flow. 
Second, achieving precise control of material flow from a syringe requires the syringe 
needle remain very close to, but not touching, the substrate, so that the deposited flow 
does not break irregularly into droplets and the needle does not collide with previ-
ously deposited material. This is exceedingly difficult to achieve without sophisti-
cated sensing and feedback control. An IJP head, however, can remain several milli-
meters above the substrate, and hence is much less susceptible to destructive interac-
tions with minor flaws in the object being fabricated.  
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Inkjet printing should be able to produce smaller and better-defined patterns of a ma-
terial thus achieving greater object complexity or even heterogeneity than is possible 
with a syringe tool. The inexpensive inkjet system currently explored for FaH has lateral 
resolution (solidified droplet diameter) of 200-250 micrometers, but depending on the 
solids concentration of the ink used, we have observed vertical resolution (solidified 
droplet thickness) of 30-100 nanometers. More sophisticated systems can achieve lateral 
resolution of 25-50 micrometers. However, inkjets are restricted in the range of materi-
als that can be deposited – materials must have a low and well-controlled viscosity, 
must be filtered to the micron-level, and materials must not solidify or precipitate solid 
phases within the head, or it will be destroyed. For this reason, it is clearly understood 
that the inkjet capability complements, but does not supplant, the syringe tool deposition 
method for the fabrication of complex or heterogeneous objects. 

Due to these additions, the FaH is currently able to fabricate simple objects using 
the STL file format and the FaH CAM software. It is also now possible to fabricate 
arbitrary multi-material complex and heterogeneous objects given appropriate repre-
sentations and control. Development is underway to control all five axes of the ma-
chine directly from code generated using the HyperFun framework.  

7.2   HF Models Fabricated Using the FaH 

Using the HF and FaH frameworks, several test objects have been fabricated includ-
ing a horse modeled after a traditional Norwegian carving and a model of Darth  
Vader's head from Star Wars. Both of these objects were fabricated using a single 
material (Fig. 11).   

 

Fig. 11. Single material objects fabricated using HF and FaH 
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The fabrication path was generated by FaH CAM after importing STL files gener-
ated by the HyperFun framework. The CAM software had to be modified to handle 
the more complicated topology of Darth Vader's bust and generate the correct tooling 
paths. However, the short term development goal is to drive the FaH from HF for 
direct hetrogenous fabrication. The material used to fabricate these objects is a Nor-
wegian construction adhesive, Ebofix which performed nicely in the FaH and resulted 
in nice semi-translucent objects. Both of these models where fabricated in the period 
of a day, Darth Vader's bust being, to date, the longest build for the FaH at almost 
nine hours.  

7.3   Functional Multi-material Objects 

A variety of functional models have been fabricated using the FaH including: batter-
ies that are producing power even before the fabrication process is over, LED flash-
light with a working switch (Fig. 12), toys that light up when pushed and electro ac-
tive polymer actuator able to respond to electrical current by physical motion. Exten-
sive use is made of the priority feature of the path planning software to reduce the 
number of tool changes in complicated multi-material object. For example, when fab-
ricating a standard cylindrical battery, the battery case and the node conductor are set 
to the same priority, but higher than that of the other materials. The case and the an-
ode conductor are deposited in a normal (non-backfill) layer-wise fashion, which al-
lows the conductor to extend through an opening in the wall of the case for ease of 
connection. The FaH is extremely versatile multi-material fabricator capable of creat-
ing a wide variety of objects and utilizing a broad range of materials including epoxy, 
Ag-filled silicone, polyvinyl alcohol, alginate hydrogels and even chocolate.  
 
 

 

Fig. 12. (a) A fabricated LED flashlight with a working switch (b) and a fabricated zinc air 
battery  

7.4   Complex and Heterogeneous Objects 

Several models have been made on a Z Corp Spectrum Z510, a 3D color fabricator, to 
clearly demonstrate HyperFun's ability to represent and fabricate heterogeneous ob-
jects (Fig. 13). Although the object in Fig. 13 may look similar to objects modeled 
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using traditional modeling software, it is important to understand that no texture maps 
were used to define or fabricate this object. It is purely a function-based model (see its 
detailed description elsewhere in this volume). Cross sections of the model are made 
at the resolution of the Spectrum Z510 and surface color (or even internal color) is 
derived from the composition of material modeled using HF. 
 
 

 

Fig. 13. HF Multi-material geology model fabricated on Z Corp Spectrum Z510 

As the modifications to the FaH currently allow only to print in two materials, sev-
eral new test models using two materials have been created to print with specific ma-
terials as good examples to demonstrate the difference between simple, complex and 
heterogeneous objects. Even using such a uniform and precise framework as HF, 
solving the issue of how to fabricate smoothly blended, heterogeneous objects on any 
given system can still require technological choices and solutions to be made. There 
are two approaches for using the FaH to fabricate such objects: blend the materials 
during fabrication or use some method of dithering between materials. Generalized 
code is being developed allowing for any method or type of dithering to be used. As 
HF allows for any number of properties to be assigned to any location it is also inter-
esting to consider not only controlling the material distribution but the method of fab-
rication where several very different tools and/or processes can be used, each perhaps 
with several materials. 

8   Discussion 

Many of the implementation problems facing UDF remain unsolved and there is 
much work yet to do and new problems to discover. However, it is interesting to see 
just how far we can already come by simply adding a bit of glue between existing 
technologies and projects. It is also interesting to note the extremely low cost of the 
system proposed. With active work and a few additions, the current system can start 
to verge on a functional UDF. 
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The FaH, as of yet, does not blend materials on-the-fly and the deposition size of a 
given material is relatively large, so in some sense it can only practically fabricate 
complex and not heterogeneous objects. However, a variety of higher resolution and 
more sophisticated fabrication methods can be developed including blending materi-
als before depositing them. Similarly the FaH tool options do not yet include a digital 
self-assembly tool. While the current hardware and software platform is not designed 
to digitally assemble objects, it will be possible in the near future to add such  
capabilities.  

At present there are no accessible GUI tools for the modeling of heterogeneous ob-
jects with complex parts and relationships. HF lacks such an interface and users can 
not import or use existing models from traditional CAD systems with the standard 
HyperFun tools, so everything must be modeled anew. However, research and devel-
opment exists that solves this problem. It will be possible in the near future to func-
tionalize STL or other mesh data and use with the standard HyperFun tools as any 
other geometric primitive in the system. However, to truly make HF a usable part of a 
UDF system, additional GUI based design tools will be required. This is an active 
area of development. 

The very real and serious issues of human and environmental hazards, although not 
covered here, will require earnest discussions and more active research. Input materi-
als should avoid delivery to a UDF system in the form of powders or gases. Low toxic 
and bio-plastics should be considered for use in fabrication. It maybe possible to lev-
erage the design freedom and complexity provided by UDF to redesign objects using 
biologically neutral and/or biodegradable materials and abandon the use of rarefied 
and toxic materials. Finally, the most important long term question to pose is can 
these complicated multi-material objects be disassembled back into parts or be recy-
cled in some way. Environmentally, without the appropriate research and develop-
ment behind better, smarter materials and fabricators, UDF could prove to be unsus-
tainable. 

9   Conclusion and Future Work 

Inexpensive digital computation is allowing us to change the way we see and interact 
with the world and each other—to understand the world as heterogeneous and operate 
in and modify the world as such. We can now use computation to control matter, to 
design and fabricate “natural” solutions and objects. This has the potential to create 
products which are universally superior physiologically, environmentally, and func-
tionally. Increasingly this is so because digital computation also makes it possible to 
instantly collaborate globally and share complex information, resulting in peer-based 
and localized designs. It puts the power of innovation into the hands of the few and 
the many at the same moment. UDF and similar technologies will change the way 
humans produce and consume goods, allowing individuals access, not to a factory or a 
superstore, but their own inexpensive and limitless digital workshop. 

This digital epoch has already begun to take place, as a growing number of people 
invest in this technology and put it into action. We are continuing the development of 
the software and hardware of the Fab@Home Model 1 to provide performance and 
usability enhancements in anticipation of an onslaught of questions and complaints as 
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the first wave of Model 1 users finish assembling and start using their machines. This 
will be a critical test of the survival of FaH, and we must ensure that we do not dis-
courage these brave early adopters. Efforts will be directed to continued development 
of direct heterogeneous fabrication on the FaH, utilizing the HF framework. Modifi-
cation to the FaH, sample object and code will be available on-line to let developers 
and users explore the new possibility. 

Future development will be focused on improving the capabilities and integration 
of both hardware and software systems bringing together a complete UDF system. 
Development to build the next generation UDF fabricator and design tools are already 
underway. Ongoing UDF hardware research is developing digital self-assembly proc-
esses for the fabrication of objects by using materials with known properties and ge-
ometries. Software development will continue focusing on the creation of a complete 
UDF GUI modeling and fabrication software suite based on FRep and HyperFun 
technologies.  
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